Dynamics of One-Dimensional Maps

Dynamics of One-Dimensional Maps PDF Author: A.N. Sharkovsky
Publisher: Springer Science & Business Media
ISBN: 940158897X
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.

Dynamics of One-Dimensional Maps

Dynamics of One-Dimensional Maps PDF Author: A.N. Sharkovsky
Publisher: Springer Science & Business Media
ISBN: 940158897X
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.

Topics from One-Dimensional Dynamics

Topics from One-Dimensional Dynamics PDF Author: Karen M. Brucks
Publisher: Cambridge University Press
ISBN: 9780521547666
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
One-dimensional dynamics owns many deep results and avenues of active mathematical research. Numerous inroads to this research exist for the advanced undergraduate or beginning graduate student. This book provides glimpses into one-dimensional dynamics with the hope that the results presented illuminate the beauty and excitement of the field. Much of this material is covered nowhere else in textbook format, some are mini new research topics in themselves, and novel connections are drawn with other research areas both inside and outside the text. The material presented here is not meant to be approached in a linear fashion. Readers are encouraged to pick and choose favourite topics. Anyone with an interest in dynamics, novice or expert alike, will find much of interest within.

One-Dimensional Dynamics

One-Dimensional Dynamics PDF Author: Welington de Melo
Publisher: Springer Science & Business Media
ISBN: 3642780431
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures

Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures PDF Author: Viktor Avrutin
Publisher: World Scientific
ISBN: 9811204713
Category : Mathematics
Languages : en
Pages : 649

Get Book Here

Book Description
The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.

Iterated Maps on the Interval as Dynamical Systems

Iterated Maps on the Interval as Dynamical Systems PDF Author: Pierre Collet
Publisher: Springer Science & Business Media
ISBN: 0817649271
Category : Science
Languages : en
Pages : 259

Get Book Here

Book Description
Iterations of continuous maps of an interval to itself serve as the simplest examples of models for dynamical systems. These models present an interesting mathematical structure going far beyond the simple equilibrium solutions one might expect. If, in addition, the dynamical system depends on an experimentally controllable parameter, there is a corresponding mathematical structure revealing a great deal about interrelations between the behavior for different parameter values. This work explains some of the early results of this theory to mathematicians and theoretical physicists, with the additional hope of stimulating experimentalists to look for more of these general phenomena of beautiful regularity, which oftentimes seem to appear near the much less understood chaotic systems. Although continuous maps of an interval to itself seem to have been first introduced to model biological systems, they can be found as models in most natural sciences as well as economics. Iterated Maps on the Interval as Dynamical Systems is a classic reference used widely by researchers and graduate students in mathematics and physics, opening up some new perspectives on the study of dynamical systems .

Chaotic Dynamics of Nonlinear Systems

Chaotic Dynamics of Nonlinear Systems PDF Author: S. Neil Rasband
Publisher: Courier Dover Publications
ISBN: 0486795993
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.

Chaos

Chaos PDF Author: Andrew Fowler
Publisher: Springer Nature
ISBN: 3030325385
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This is a textbook on chaos and nonlinear dynamics, written by applied mathematicians for applied mathematicians. It aims to tread a middle ground between the mathematician's rigour and the physicist’s pragmatism. While the subject matter is now classical and can be found in many other books, what distinguishes this book is its philosophical approach, its breadth, its conciseness, and its exploration of intellectual byways, as well as its liberal and informative use of illustration. Written at the graduate student level, the book occasionally drifts from classical material to explore new avenues of thought, sometimes in the exercises. A key feature of the book is its holistic approach, encompassing the development of the subject since the time of Poincaré, and including detailed material on maps, homoclinic bifurcations, Hamiltonian systems, as well as more eclectic items such as Julia and Mandelbrot sets. Some of the more involved codes to produce the figures are described in the appendix. Based on lectures to upper undergraduates and beginning graduate students, this textbook is ideally suited for courses at this level and each chapter includes a set of exercises of varying levels of difficulty.

Dynamics Reported

Dynamics Reported PDF Author: Christopher K. R. T. Jones
Publisher:
ISBN: 9780387601656
Category : Differentiable dynamical systems
Languages : en
Pages : 287

Get Book Here

Book Description


Applied Symbolic Dynamics And Chaos

Applied Symbolic Dynamics And Chaos PDF Author: Bailin Hao
Publisher: World Scientific
ISBN: 9814495972
Category : Science
Languages : en
Pages : 460

Get Book Here

Book Description
Latest Edition: Applied Symbolic Dynamics and Chaos (2nd Edition)Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.