Author: David P. Rosin
Publisher: Springer
ISBN: 3319135783
Category : Science
Languages : en
Pages : 208
Book Description
This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays. The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments.
Dynamics of Complex Autonomous Boolean Networks
Author: David P. Rosin
Publisher: Springer
ISBN: 3319135783
Category : Science
Languages : en
Pages : 208
Book Description
This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays. The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments.
Publisher: Springer
ISBN: 3319135783
Category : Science
Languages : en
Pages : 208
Book Description
This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays. The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments.
Controlling Synchronization Patterns in Complex Networks
Author: Judith Lehnert
Publisher: Springer
ISBN: 3319251155
Category : Science
Languages : en
Pages : 213
Book Description
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.
Publisher: Springer
ISBN: 3319251155
Category : Science
Languages : en
Pages : 213
Book Description
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.
Discrete-Time and Discrete-Space Dynamical Systems
Author: Kuize Zhang
Publisher: Springer
ISBN: 3030259722
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Discrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including: Boolean control networks; nondeterministic finite-transition systems; finite automata; labelled Petri nets; and cellular automata. The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology. Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods.
Publisher: Springer
ISBN: 3030259722
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Discrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including: Boolean control networks; nondeterministic finite-transition systems; finite automata; labelled Petri nets; and cellular automata. The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology. Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods.
Complex and Adaptive Dynamical Systems
Author: Claudius Gros
Publisher: Springer
ISBN: 3319162659
Category : Science
Languages : en
Pages : 433
Book Description
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard mathematical tools for an advanced undergraduate course in the natural sciences or engineering. Each chapter includes exercises and suggestions for further reading, and the solutions to all exercises are provided in the last chapter. From the reviews of previous editions: This is a very interesting introductory book written for a broad audience of graduate students in natural sciences and engineering. It can be equally well used both for teac hing and self-education. Very well structured and every topic is illustrated with simple and motivating examples. This is a true guidebook to the world of complex nonlinear phenomena. (Ilya Pavlyukevich, Zentralblatt MATH, Vol. 1146, 2008) Claudius Gros’ Complex and Adaptive Dynamical Systems: A Primer is a welcome addition to the literature. A particular strength of the book is its emphasis on analytical techniques for studying complex systems. (David P. Feldman, Physics Today, July, 2009).
Publisher: Springer
ISBN: 3319162659
Category : Science
Languages : en
Pages : 433
Book Description
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard mathematical tools for an advanced undergraduate course in the natural sciences or engineering. Each chapter includes exercises and suggestions for further reading, and the solutions to all exercises are provided in the last chapter. From the reviews of previous editions: This is a very interesting introductory book written for a broad audience of graduate students in natural sciences and engineering. It can be equally well used both for teac hing and self-education. Very well structured and every topic is illustrated with simple and motivating examples. This is a true guidebook to the world of complex nonlinear phenomena. (Ilya Pavlyukevich, Zentralblatt MATH, Vol. 1146, 2008) Claudius Gros’ Complex and Adaptive Dynamical Systems: A Primer is a welcome addition to the literature. A particular strength of the book is its emphasis on analytical techniques for studying complex systems. (David P. Feldman, Physics Today, July, 2009).
Complexity, Entropy And The Physics Of Information
Author: Wojciech H. Zurek
Publisher: CRC Press
ISBN: 0429971435
Category : Science
Languages : en
Pages : 545
Book Description
This book has emerged from a meeting held during the week of May 29 to June 2, 1989, at St. John’s College in Santa Fe under the auspices of the Santa Fe Institute. The (approximately 40) official participants as well as equally numerous “groupies” were enticed to Santa Fe by the above “manifesto.” The book—like the “Complexity, Entropy and the Physics of Information” meeting explores not only the connections between quantum and classical physics, information and its transfer, computation, and their significance for the formulation of physical theories, but it also considers the origins and evolution of the information-processing entities, their complexity, and the manner in which they analyze their perceptions to form models of the Universe. As a result, the contributions can be divided into distinct sections only with some difficulty. Indeed, I regard this degree of overlapping as a measure of the success of the meeting. It signifies consensus about the important questions and on the anticipated answers: they presumably lie somewhere in the “border territory,” where information, physics, complexity, quantum, and computation all meet.
Publisher: CRC Press
ISBN: 0429971435
Category : Science
Languages : en
Pages : 545
Book Description
This book has emerged from a meeting held during the week of May 29 to June 2, 1989, at St. John’s College in Santa Fe under the auspices of the Santa Fe Institute. The (approximately 40) official participants as well as equally numerous “groupies” were enticed to Santa Fe by the above “manifesto.” The book—like the “Complexity, Entropy and the Physics of Information” meeting explores not only the connections between quantum and classical physics, information and its transfer, computation, and their significance for the formulation of physical theories, but it also considers the origins and evolution of the information-processing entities, their complexity, and the manner in which they analyze their perceptions to form models of the Universe. As a result, the contributions can be divided into distinct sections only with some difficulty. Indeed, I regard this degree of overlapping as a measure of the success of the meeting. It signifies consensus about the important questions and on the anticipated answers: they presumably lie somewhere in the “border territory,” where information, physics, complexity, quantum, and computation all meet.
Reservoir Computing
Author: Kohei Nakajima
Publisher: Springer Nature
ISBN: 9811316872
Category : Computers
Languages : en
Pages : 463
Book Description
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.
Publisher: Springer Nature
ISBN: 9811316872
Category : Computers
Languages : en
Pages : 463
Book Description
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.
Formal Methods
Author: Marieke Huisman
Publisher: Springer Nature
ISBN: 3030908704
Category : Computers
Languages : en
Pages : 801
Book Description
This book constitutes the refereed proceedings of the 24th Symposium on Formal Methods, FM 2021, held virtually in November 2021. The 43 full papers presented together with 4 invited presentations were carefully reviewed and selected from 131 submissions. The papers are organized in topical sections named: Invited Presentations. - Interactive Theorem Proving, Neural Networks & Active Learning, Logics & Theory, Program Verification I, Hybrid Systems, Program Verification II, Automata, Analysis of Complex Systems, Probabilities, Industry Track Invited Papers, Industry Track, Divide et Impera: Efficient Synthesis of Cyber-Physical System.
Publisher: Springer Nature
ISBN: 3030908704
Category : Computers
Languages : en
Pages : 801
Book Description
This book constitutes the refereed proceedings of the 24th Symposium on Formal Methods, FM 2021, held virtually in November 2021. The 43 full papers presented together with 4 invited presentations were carefully reviewed and selected from 131 submissions. The papers are organized in topical sections named: Invited Presentations. - Interactive Theorem Proving, Neural Networks & Active Learning, Logics & Theory, Program Verification I, Hybrid Systems, Program Verification II, Automata, Analysis of Complex Systems, Probabilities, Industry Track Invited Papers, Industry Track, Divide et Impera: Efficient Synthesis of Cyber-Physical System.
Efficiency in Complex Systems
Author: Georgi Yordanov Georgiev
Publisher: Springer Nature
ISBN: 3030692884
Category : Science
Languages : en
Pages : 161
Book Description
This book uses new ideas and language for understanding how self-organization and complexity trend toward increased efficiency. Different measures for efficiency from multiple disciplines are used to probe the ones that provide the most insight. One major goal is to seek a common framework to trace the increase of efficiency as a measure of the level of organization and evolutionary stage of a complex system. The chapters come from a satellite meeting hosted at the Conference on Complex Systems, in Cancun, 2017. The contributions will be peer-reviewed and contributors from outside the conference will be invited to submit chapters to ensure full coverage of the topics. This text will appeal to students and researchers working on complex systems and efficiency.
Publisher: Springer Nature
ISBN: 3030692884
Category : Science
Languages : en
Pages : 161
Book Description
This book uses new ideas and language for understanding how self-organization and complexity trend toward increased efficiency. Different measures for efficiency from multiple disciplines are used to probe the ones that provide the most insight. One major goal is to seek a common framework to trace the increase of efficiency as a measure of the level of organization and evolutionary stage of a complex system. The chapters come from a satellite meeting hosted at the Conference on Complex Systems, in Cancun, 2017. The contributions will be peer-reviewed and contributors from outside the conference will be invited to submit chapters to ensure full coverage of the topics. This text will appeal to students and researchers working on complex systems and efficiency.
Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics
Author: Visarath In
Publisher: Springer
ISBN: 3030108929
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book presents collaborative research presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena. The conference provides a unique forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, and stochastic resonance. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2018) held in Maui, Hawaii, 2018. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
Publisher: Springer
ISBN: 3030108929
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book presents collaborative research presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena. The conference provides a unique forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, and stochastic resonance. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2018) held in Maui, Hawaii, 2018. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
A Collection of Papers on Chaos Theory and Its Applications
Author: Paul Bracken
Publisher: BoD – Books on Demand
ISBN: 1839628588
Category : Mathematics
Languages : en
Pages : 265
Book Description
This current volume contains 12 new papers on the subject of chaos in the physical sciences, which was initiated with the publication of the book Research Advances in Chaos Theory. It is clear the subject continues to attract a great deal of attention among scientists in the scientific community. This volume looks at such problems as chaos in nonlinear systems, in dynamical systems, quantum chaos, biological applications, and a few new emerging areas as well.
Publisher: BoD – Books on Demand
ISBN: 1839628588
Category : Mathematics
Languages : en
Pages : 265
Book Description
This current volume contains 12 new papers on the subject of chaos in the physical sciences, which was initiated with the publication of the book Research Advances in Chaos Theory. It is clear the subject continues to attract a great deal of attention among scientists in the scientific community. This volume looks at such problems as chaos in nonlinear systems, in dynamical systems, quantum chaos, biological applications, and a few new emerging areas as well.