Dynamics of Bose-Einstein Condensates in Optical Lattices

Dynamics of Bose-Einstein Condensates in Optical Lattices PDF Author: Sarah McKinney
Publisher:
ISBN:
Category : Bose-Einstein condensation
Languages : en
Pages : 138

Get Book Here

Book Description

Dynamics of Bose-Einstein Condensates in Optical Lattices

Dynamics of Bose-Einstein Condensates in Optical Lattices PDF Author: Sarah McKinney
Publisher:
ISBN:
Category : Bose-Einstein condensation
Languages : en
Pages : 138

Get Book Here

Book Description


Dynamics of Bose-Einstein Condensates in Optical Lattices

Dynamics of Bose-Einstein Condensates in Optical Lattices PDF Author: Karen Anna Clara Braun-Munzinger
Publisher:
ISBN:
Category : Bose-Einstein condensation
Languages : en
Pages : 190

Get Book Here

Book Description


Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice

Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice PDF Author: Wei Li
Publisher:
ISBN: 9780549062998
Category :
Languages : en
Pages : 366

Get Book Here

Book Description
The realization of Bose Einstein condensation in ultra-cold dilute atomic gases, represented by a macroscopic occupation of ground state and the non-vanishing order parameter, makes the study of quantum many-body physics and condensed matter physics much easier. Especially, the quantum dynamics of condensate in the optical lattice serves as a perfect test-bed to study the condensed matter physics such as Josephson tunneling, Bloch oscillations, Landau-Zener tunneling. The interplay of mean field interaction and coherent Josephson tunneling leads to rich phases described by the Bose-Hubbard model such as Superfluid-Insulator transition at zero temperature and Berezinskii-Kosterlitz thouless transition at finite temperature. Furthermore, due to the extremely narrow momentum distribution of Bose Einstein condensate, it can be used to make interferometer as sensitive phase detector. The creation of number squeezed state of BEC enables the realization of Heisenberg-limited interferometer which can bring the noise below shot-noise level. The coherence time of such squeezed state interferometer can be longer than that of the coherent state interferometers. The quasi-2D geometry in 1D optical lattice can be used to study superfluid to normal fluid transition when topological order is broken. The studies of Kosterlitz-Thouless with inter-well coupling can lead to the interpretation of High TC superconductivity. This work will discuss the quantum dynamics of the Bose-Einstein condensate in 1D optical lattice.

Localisation of Bose-Einstein Condensates in Optical Lattices

Localisation of Bose-Einstein Condensates in Optical Lattices PDF Author: Russell Campbell
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The properties of Bose-Einstein condensates can be studied and controlled effectively when trapped in optical lattices formed by two counter-propagating laser beams. The dynamics of Bose-Einstein condensates in optical lattices are well-described by a continuous model using the Gross-Pitaevskii equation in a modulated potential or, in the case of deep potentials, a discrete model using the Discrete Nonlinear Schrodinger equation. Spatially localised modes, known as lattice solitons in the continuous model, or discrete breathers in the discrete model, can occur and are the focus of this thesis. Theoretical and computational studies of these localised modes are investigated in three different situations. Firstly, a model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary or at a moving location on the ring is presented in the continuous model. The localised dissipation is shown to generate and stabilise both stationary and traveling lattice solitons. The solutions generated include spatially stationary quasiperiodic lattice solitons and a family of traveling lattice solitons with two intensity peaks per potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons as well as between two traveling lattice solitons display a dependence on the lattice depth. Then, collisions with a potential barrier of either travelling lattice solitons or travelling discrete breathers are investigated along with their dependence on the height of the barrier. Regions of complete reection or of partial reflection where the incoming soliton/breather is split in two, are observed and understood interms of the soliton properties. Partial trapping of the atoms in the barrier is observed for positive barrier heights due to the negative effective mass of the solitons/breathers. Finally, two coupled discrete nonlinear Schrodinger equations can describe the interaction and collisions of breathers in two-species Bose-Einstein condensates in deep optical lattices. This is done for two cases of experimental relevance: a mixture of two ytterbium isotopes and a mixture of Rubidium (87Rb) and Potassium(41K) atoms. Depending on their initial separation, interaction between stationary breathers of different species can lead to the formation of symbiotic localised structures or transform one of the breathers from a stationary one into a travelling one. Collisions between travelling and stationary discrete breathers composed of different species are separated in four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is suffciently large and repulsive.

Construction of Apparatus and First Experiments Investigating Dynamics of Bose-Einstein Condensates in Disordered Optical Lattices

Construction of Apparatus and First Experiments Investigating Dynamics of Bose-Einstein Condensates in Disordered Optical Lattices PDF Author: Emily E. Edwards
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Bose-Einstein Condensation

Bose-Einstein Condensation PDF Author: Lev. P. Pitaevskii
Publisher: Oxford University Press
ISBN: 9780198507192
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.

Non-equilibrium Dynamics of a Bose-Einstein Condensate in an Optical Lattice

Non-equilibrium Dynamics of a Bose-Einstein Condensate in an Optical Lattice PDF Author: Uttam Man Shrestha
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Stability and Collapse Dynamics of Dipolar Bose-Einstein Condensates in One-dimensional Optical Lattices

Stability and Collapse Dynamics of Dipolar Bose-Einstein Condensates in One-dimensional Optical Lattices PDF Author: Stefan Müller
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Emergent Nonlinear Phenomena in Bose-Einstein Condensates

Emergent Nonlinear Phenomena in Bose-Einstein Condensates PDF Author: Panayotis G. Kevrekidis
Publisher: Springer Science & Business Media
ISBN: 3540735917
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.

Soliton Management in Periodic Systems

Soliton Management in Periodic Systems PDF Author: Boris A. Malomed
Publisher: Springer Science & Business Media
ISBN: 0387293345
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
During the past ten years, there has been intensive development in theoretical and experimental research of solitons in periodic media. This book provides a unique and informative account of the state-of-the-art in the field. The volume opens with a review of the existence of robust solitary pulses in systems built as a periodic concatenation of very different elements. Among the most famous examples of this type of systems are the dispersion management in fiber-optic telecommunication links, and (more recently) photonic crystals. A number of other systems belonging to the same broad class of spatially periodic strongly inhomogeneous media (such as the split-step and tandem models) have recently been identified in nonlinear optics, and transmission of solitary pulses in them was investigated in detail. Similar soliton dynamics occurs in temporal-domain counterparts of such systems, where they are subject to strong time-periodic modulation (for instance, the Feshbach-resonance management in Bose-Einstein condensates). Basis results obtained for all these systems are reviewed in the book. This timely work will serve as a useful resource for the soliton community.