Dynamics and Stability of Thermal Flying-height Control Sliders in Hard Disk Drives

Dynamics and Stability of Thermal Flying-height Control Sliders in Hard Disk Drives PDF Author: Jinglin Zheng
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
As a recent development to further reduce the flying height of a magnetic head in hard disk drives (HDDs) to nanometers, thermal flying-height (TFC) control technology is now widely applied in the HDD industry because it enables consistent read/write spacing, increased storage density and improved HDD reliability. The fast development of TFC technology presents new challenges to head designers because of the complicated structure of a TFC head, the thermo-mechanical-coupling effects and tribology issues arising at nanometer read/write spacing. A steady-state TFC solver dedicated to obtaining the steady-state flying attitude of a TFC slider is developed in this thesis. This solver uses a finite volume based solver (CML static solver) to solve the generalized Reynolds equation and obtain the pressure and spacing fields in the air bearing and a commercial coupled-field solver (ANSYS) to obtain the stress and strain fields due to internal heating. An iterative procedure is adopted to consider the cooling effect of the air bearing on the heater-induced protrusion. Accuracy of the solver is verified by drive-level magnetic tests on several combinations of air bearing and heater designs. TFC sliders' performances under different ambient conditions are investigated based on the TFC solver. It is found that the thermal actuation efficiency of a TFC slider increases with altitude because of the weakened cooling and reduced air bearing stiffness at the transducer area at a higher altitude. In addition, a TFC slider maintains a more consistent read/write spacing at different humidity levels, compared with a non-TFC slider, because the thermal actuation is able to compensate part of the pressure loss caused by water condensation. A TFC slider's flying height in air-helium mixtures is shown to be a highly nonlinear function of the fraction of helium in the gas mixture due to the combined effects of the gas mean free path, viscosity and heat conductivity. These results provide general guidelines for heater and ABS designers to reduce a TFC slider's sensitivity to ambient conditions and improve HDD reliability. A touchdown numerical model for predicting TFC sliders' dynamics at touchdown and over-pushed conditions is developed and implemented based on the CML dynamic simulator. It extends the solution of the time-varying generalized Reynolds equation to near-contact and contact conditions using a statistical multi-asperity approach. Various interfacial forces are considered by use and further development of a sub-boundary lubrication model to capture important tribological effects occurring at touchdown. This model is able to predict a TFC slider's unstable dynamics at the beginning of touchdown, which has been discovered in many related experimental studies. The effects of different head-disk interface factors are investigated using this numerical model. It is found that the suspension is actively involved in the TFC slider's bouncing vibrations and has a significant influence on the excited second air bearing pitch mode. It is also shown that adhesion force serves as an essential factor in exciting the second air bearing mode whereas other interfacial forces only affect details of the slider's bouncing behaviors. By changing the interfacial properties, namely, the interface roughness and lubricant thickness, the variation of interfacial forces with spacing reduction differs, which leads to very different touchdown patterns. With a rougher interface profile the slider smoothly transfers from a flying stage to a sliding stage. With a smoother interface profile the slider experiences a flying-bouncing-sliding transition. With the smoothest interface the slider goes through a flying-bouncing-surfing-sliding transition. The touchdown behaviors predicted by the numerical simulator are correlated with experiments conducted on industry-provided head parts with the same ABS and suspension design. Similar touchdown stages and excited modes are also discovered in the experiments. Though experiments showed a slider spectrum with richer frequency components, the modes missed from the numerical simulations are recovered by conducting a harmonic analysis on a full HGA model with air bearing included. The different touchdown dynamic patterns predicted here result in significant differences in the successful touchdown detection, which is very important for realizing reliable read/write operations, and therefore this work provides guidelines for head disk interface (HDI) optimization. The general approach proposed here is also applicable to studies on the effects of other important HDI factors, such as air bearing geometric features, heater-induced protrusion profiles, and suspension design parameters, and on the slider's touchdown dynamics behaviors, which will assist in obtaining solutions to performance and reliability issues in current hard disk drives.

Dynamics and Stability of Thermal Flying-height Control Sliders in Hard Disk Drives

Dynamics and Stability of Thermal Flying-height Control Sliders in Hard Disk Drives PDF Author: Jinglin Zheng
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
As a recent development to further reduce the flying height of a magnetic head in hard disk drives (HDDs) to nanometers, thermal flying-height (TFC) control technology is now widely applied in the HDD industry because it enables consistent read/write spacing, increased storage density and improved HDD reliability. The fast development of TFC technology presents new challenges to head designers because of the complicated structure of a TFC head, the thermo-mechanical-coupling effects and tribology issues arising at nanometer read/write spacing. A steady-state TFC solver dedicated to obtaining the steady-state flying attitude of a TFC slider is developed in this thesis. This solver uses a finite volume based solver (CML static solver) to solve the generalized Reynolds equation and obtain the pressure and spacing fields in the air bearing and a commercial coupled-field solver (ANSYS) to obtain the stress and strain fields due to internal heating. An iterative procedure is adopted to consider the cooling effect of the air bearing on the heater-induced protrusion. Accuracy of the solver is verified by drive-level magnetic tests on several combinations of air bearing and heater designs. TFC sliders' performances under different ambient conditions are investigated based on the TFC solver. It is found that the thermal actuation efficiency of a TFC slider increases with altitude because of the weakened cooling and reduced air bearing stiffness at the transducer area at a higher altitude. In addition, a TFC slider maintains a more consistent read/write spacing at different humidity levels, compared with a non-TFC slider, because the thermal actuation is able to compensate part of the pressure loss caused by water condensation. A TFC slider's flying height in air-helium mixtures is shown to be a highly nonlinear function of the fraction of helium in the gas mixture due to the combined effects of the gas mean free path, viscosity and heat conductivity. These results provide general guidelines for heater and ABS designers to reduce a TFC slider's sensitivity to ambient conditions and improve HDD reliability. A touchdown numerical model for predicting TFC sliders' dynamics at touchdown and over-pushed conditions is developed and implemented based on the CML dynamic simulator. It extends the solution of the time-varying generalized Reynolds equation to near-contact and contact conditions using a statistical multi-asperity approach. Various interfacial forces are considered by use and further development of a sub-boundary lubrication model to capture important tribological effects occurring at touchdown. This model is able to predict a TFC slider's unstable dynamics at the beginning of touchdown, which has been discovered in many related experimental studies. The effects of different head-disk interface factors are investigated using this numerical model. It is found that the suspension is actively involved in the TFC slider's bouncing vibrations and has a significant influence on the excited second air bearing pitch mode. It is also shown that adhesion force serves as an essential factor in exciting the second air bearing mode whereas other interfacial forces only affect details of the slider's bouncing behaviors. By changing the interfacial properties, namely, the interface roughness and lubricant thickness, the variation of interfacial forces with spacing reduction differs, which leads to very different touchdown patterns. With a rougher interface profile the slider smoothly transfers from a flying stage to a sliding stage. With a smoother interface profile the slider experiences a flying-bouncing-sliding transition. With the smoothest interface the slider goes through a flying-bouncing-surfing-sliding transition. The touchdown behaviors predicted by the numerical simulator are correlated with experiments conducted on industry-provided head parts with the same ABS and suspension design. Similar touchdown stages and excited modes are also discovered in the experiments. Though experiments showed a slider spectrum with richer frequency components, the modes missed from the numerical simulations are recovered by conducting a harmonic analysis on a full HGA model with air bearing included. The different touchdown dynamic patterns predicted here result in significant differences in the successful touchdown detection, which is very important for realizing reliable read/write operations, and therefore this work provides guidelines for head disk interface (HDI) optimization. The general approach proposed here is also applicable to studies on the effects of other important HDI factors, such as air bearing geometric features, heater-induced protrusion profiles, and suspension design parameters, and on the slider's touchdown dynamics behaviors, which will assist in obtaining solutions to performance and reliability issues in current hard disk drives.

Investigation of Flying Height Stability of Thermal Fly-height Control Sliders in Lubricant Or Solid Contact with Roughness

Investigation of Flying Height Stability of Thermal Fly-height Control Sliders in Lubricant Or Solid Contact with Roughness PDF Author: Jinglin Zheng
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advanced Tribology

Advanced Tribology PDF Author: Jianbin Luo
Publisher: Springer Science & Business Media
ISBN: 3642036538
Category : Technology & Engineering
Languages : en
Pages : 1040

Get Book Here

Book Description
"Advanced Tribology" is the proceedings of the 5th China International Symposium on Tribology (held every four years) and the 1st International Tribology Symposium of IFToMM, held in Beijing 24th-27th September 2008. It contains seven parts: lubrication; friction and wear; micro/nano-tribology; tribology of coatings, surface and interface; biotribology; tribo-chemistry; industry tribology. The book reflects the recent progress in the fields such as lubrication, friction and wear, coatings, and precision manufacture etc. in the world. The book is intended for researchers, engineers and graduate students in the field of tribology, lubrication, mechanical production and industrial design. The editors Jianbin Luo, Yonggang Meng, Tianmin Shao and Qian Zhao are all the professors at the State Key Lab of Tribology, Tsinghua University, Beijing.

Issues in Mechanical Engineering: 2011 Edition

Issues in Mechanical Engineering: 2011 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1464963754
Category : Technology & Engineering
Languages : en
Pages : 2526

Get Book Here

Book Description
Issues in Mechanical Engineering / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mechanical Engineering. The editors have built Issues in Mechanical Engineering: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mechanical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mechanical Engineering: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Nonlinear Approaches in Engineering Applications

Nonlinear Approaches in Engineering Applications PDF Author: Liming Dai
Publisher: Springer
ISBN: 3319694804
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book Here

Book Description
This book analyzes the updated principles and applications of nonlinear approaches to solve engineering and physics problems. The knowledge on nonlinearity and the comprehension of nonlinear approaches are inevitable to future engineers and scientists, making this an ideal book for engineers, engineering students, and researchers in engineering, physics, and mathematics. Chapters are of specific interest to readers who seek expertise in optimization, nonlinear analysis, mathematical modeling of complex forms, and non-classical engineering problems. The book covers methodologies and applications from diverse areas such as vehicle dynamics, surgery simulation, path planning, mobile robots, contact and scratch analysis at the micro and nano scale, sub-structuring techniques, ballistic projectiles, and many more.

Journal of Tribology

Journal of Tribology PDF Author:
Publisher:
ISBN:
Category : Lubrication and lubricants
Languages : en
Pages : 468

Get Book Here

Book Description


Flying Height Control Sliders with Piezoelectric and Thermal Nanoactuators for Ultrahigh Density Magnetic Recording

Flying Height Control Sliders with Piezoelectric and Thermal Nanoactuators for Ultrahigh Density Magnetic Recording PDF Author: Jia-Yang Juang
Publisher:
ISBN: 9780542825187
Category :
Languages : en
Pages : 434

Get Book Here

Book Description
The key contributions of this dissertation are the identification of some of the mechanical challenges inherent in ultrahigh density magnetic recording required for the next generation of hard disk drives as well as some solutions to address these challenges.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 854

Get Book Here

Book Description


The Effect of Contamination Particles on the Dynamics of Ultra-low Flying Air Bearing Sliders

The Effect of Contamination Particles on the Dynamics of Ultra-low Flying Air Bearing Sliders PDF Author: Xinjiang Shen
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Get Book Here

Book Description


Advanced Driver Assistance Systems and Autonomous Vehicles

Advanced Driver Assistance Systems and Autonomous Vehicles PDF Author: Yan Li
Publisher: Springer Nature
ISBN: 9811950539
Category : Technology & Engineering
Languages : en
Pages : 628

Get Book Here

Book Description
This book provides a comprehensive reference for both academia and industry on the fundamentals, technology details, and applications of Advanced Driver-Assistance Systems (ADAS) and autonomous driving, an emerging and rapidly growing area. The book written by experts covers the most recent research results and industry progress in the following areas: ADAS system design and test methodologies, advanced materials, modern automotive technologies, artificial intelligence, reliability concerns, and failure analysis in ADAS. Numerous images, tables, and didactic schematics are included throughout. This essential book equips readers with an in-depth understanding of all aspects of ADAS, providing insights into key areas for future research and development. • Provides comprehensive coverage of the state-of-the-art in ADAS • Covers advanced materials, deep learning, quality and reliability concerns, and fault isolation and failure analysis • Discusses ADAS system design and test methodologies, novel automotive technologies • Features contributions from both academic and industry authors, for a complete view of this important technology