Author: André Authier
Publisher: Oxford University Press, USA
ISBN: 9780198528920
Category : Science
Languages : en
Pages : 700
Book Description
Publisher Description
Dynamical Theory of X-ray Diffraction
Author: André Authier
Publisher: Oxford University Press, USA
ISBN: 9780198528920
Category : Science
Languages : en
Pages : 700
Book Description
Publisher Description
Publisher: Oxford University Press, USA
ISBN: 9780198528920
Category : Science
Languages : en
Pages : 700
Book Description
Publisher Description
X-Ray and Neutron Dynamical Diffraction
Author: André Authier
Publisher: Springer Science & Business Media
ISBN: 1461558794
Category : Science
Languages : en
Pages : 419
Book Description
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.
Publisher: Springer Science & Business Media
ISBN: 1461558794
Category : Science
Languages : en
Pages : 419
Book Description
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.
X-Ray Multiple-Wave Diffraction
Author: Shih-Lin Chang
Publisher: Springer Science & Business Media
ISBN: 9783540211969
Category : Science
Languages : en
Pages : 458
Book Description
This comprehensive text describes the fundamentals of X-ray multiple-wave interaction in crystals and its applications in condensed matter physics and crystallography. It covers current theoretical approaches and application methods for many materials, including macromolecular crystals, thin films, semiconductors, quasicrystals and nonlinear optical materials. X-ray optics is also addressed. Designed primarily as a reference for researchers in condensed matter, crystallography, materials science, and synchrotron-related topics, the book will also be useful as a textbook for graduate and senior-year undergraduate courses on special topics in X-ray diffraction.
Publisher: Springer Science & Business Media
ISBN: 9783540211969
Category : Science
Languages : en
Pages : 458
Book Description
This comprehensive text describes the fundamentals of X-ray multiple-wave interaction in crystals and its applications in condensed matter physics and crystallography. It covers current theoretical approaches and application methods for many materials, including macromolecular crystals, thin films, semiconductors, quasicrystals and nonlinear optical materials. X-ray optics is also addressed. Designed primarily as a reference for researchers in condensed matter, crystallography, materials science, and synchrotron-related topics, the book will also be useful as a textbook for graduate and senior-year undergraduate courses on special topics in X-ray diffraction.
X-ray Diffraction Topography
Author: Brian Keith Tanner
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 192
Book Description
X-Ray Diffraction Topography presents an elementary treatment of X-ray topography which is comprehensible to the non-specialist. It discusses the development of the principles and application of the subject matter. X-ray topography is the study of crystals which use x-ray diffraction. Some of the topics covered in the book are the basic dynamical x-ray diffraction theory, the Berg-Barrett method, Lang's method, double crystal methods, the contrast on x-ray topography, and the analysis of crystal defects and distortions. The crystals grown from solution are covered. The naturally occurring cr.
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 192
Book Description
X-Ray Diffraction Topography presents an elementary treatment of X-ray topography which is comprehensible to the non-specialist. It discusses the development of the principles and application of the subject matter. X-ray topography is the study of crystals which use x-ray diffraction. Some of the topics covered in the book are the basic dynamical x-ray diffraction theory, the Berg-Barrett method, Lang's method, double crystal methods, the contrast on x-ray topography, and the analysis of crystal defects and distortions. The crystals grown from solution are covered. The naturally occurring cr.
Theoretical Concepts of X-Ray Nanoscale Analysis
Author: Andrei Benediktovich
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
Dynamical Scattering of X-Rays in Crystals
Author: Z.G. Pinsker
Publisher: Springer
ISBN: 9783642812095
Category : Science
Languages : en
Pages : 0
Book Description
(Historical Survey) The discovery of X-ray diffraction in crystals by LAUE, FRIDRICH and KNIPPING in 1912 [1.1] served as the starting pOint for the development of scientific research along a number of important lines. We shall discuss just a few of them. The above discovery convincingly demonstrated the wave properties of X-rays. This, together with the previously established electromagnetic nature of radiation, confirmed the hypothesis that X-rays form the short-wave part of the electromagnetic spectrum. Further, this discovery was the first and decisive experimental proof of the periodic structure of crystals. In fact, theoretical crystallography had already arrived at this conclusion, mainly as an outcome of the theory of the space groups of symmetry elaborated by FEDOROV [1.2] and SCHOENFLIES [1.3]. From the optics of visible light we know that the radiation of a wave length of the same order as, and preferably less than, the period of a grat ing suffers diffraction on periodic objects of the type of optical grating. Thus, the discovery proved that the wavelength of an X-ray must be of the order of interatomic distances. It became clear why the visible light of wavelengths exceeding the crystal lattice periods by about 500 to 1000 times failed to reveal the periodic structure of crystals in diffraction experi ments.
Publisher: Springer
ISBN: 9783642812095
Category : Science
Languages : en
Pages : 0
Book Description
(Historical Survey) The discovery of X-ray diffraction in crystals by LAUE, FRIDRICH and KNIPPING in 1912 [1.1] served as the starting pOint for the development of scientific research along a number of important lines. We shall discuss just a few of them. The above discovery convincingly demonstrated the wave properties of X-rays. This, together with the previously established electromagnetic nature of radiation, confirmed the hypothesis that X-rays form the short-wave part of the electromagnetic spectrum. Further, this discovery was the first and decisive experimental proof of the periodic structure of crystals. In fact, theoretical crystallography had already arrived at this conclusion, mainly as an outcome of the theory of the space groups of symmetry elaborated by FEDOROV [1.2] and SCHOENFLIES [1.3]. From the optics of visible light we know that the radiation of a wave length of the same order as, and preferably less than, the period of a grat ing suffers diffraction on periodic objects of the type of optical grating. Thus, the discovery proved that the wavelength of an X-ray must be of the order of interatomic distances. It became clear why the visible light of wavelengths exceeding the crystal lattice periods by about 500 to 1000 times failed to reveal the periodic structure of crystals in diffraction experi ments.
X-ray Scattering from Semiconductors
Author: Paul F. Fewster
Publisher: World Scientific
ISBN: 1860941591
Category : Science
Languages : en
Pages : 303
Book Description
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.
Publisher: World Scientific
ISBN: 1860941591
Category : Science
Languages : en
Pages : 303
Book Description
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.
Basic Concepts of X-Ray Diffraction
Author: Emil Zolotoyabko
Publisher: John Wiley & Sons
ISBN: 3527681183
Category : Science
Languages : en
Pages : 299
Book Description
Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.
Publisher: John Wiley & Sons
ISBN: 3527681183
Category : Science
Languages : en
Pages : 299
Book Description
Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.
X-ray Scattering and Absorption by Magnetic Materials
Author: Stephen W. Lovesey
Publisher: Oxford University Press on Demand
ISBN: 9780198517375
Category : Science
Languages : en
Pages : 377
Book Description
This is the first book devoted to the use of X-ray beam techniques to study magnetic properties of materials. It covers both experimental and theoretical issues. The three main topics are dichroism, elastic scattering (both non-resonant and resonant diffraction) and spectroscopy. In thepast decade there has been an expansion of activity in the field, driven by the availability of intense, tuneable and highly polarized X-ray beams from synchrtron facilities. The pace of events is likely to continue with the start of new (3rd generation) facilities, including the EuropeanSynchrotron Radiation Facility, Grenoble, and the Advanced Light Source, Argonne National Laboratory. USA.
Publisher: Oxford University Press on Demand
ISBN: 9780198517375
Category : Science
Languages : en
Pages : 377
Book Description
This is the first book devoted to the use of X-ray beam techniques to study magnetic properties of materials. It covers both experimental and theoretical issues. The three main topics are dichroism, elastic scattering (both non-resonant and resonant diffraction) and spectroscopy. In thepast decade there has been an expansion of activity in the field, driven by the availability of intense, tuneable and highly polarized X-ray beams from synchrtron facilities. The pace of events is likely to continue with the start of new (3rd generation) facilities, including the EuropeanSynchrotron Radiation Facility, Grenoble, and the Advanced Light Source, Argonne National Laboratory. USA.
X-Ray Optics
Author: Yuri Shvyd'ko
Publisher: Springer
ISBN: 3540408908
Category : Science
Languages : en
Pages : 416
Book Description
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.
Publisher: Springer
ISBN: 3540408908
Category : Science
Languages : en
Pages : 416
Book Description
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.