Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 366206796X
Category : Mathematics
Languages : en
Pages : 346
Book Description
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Dynamical Systems VII
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 366206796X
Category : Mathematics
Languages : en
Pages : 346
Book Description
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Publisher: Springer Science & Business Media
ISBN: 366206796X
Category : Mathematics
Languages : en
Pages : 346
Book Description
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Dynamical Systems VII
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 9783540181767
Category : Mathematics
Languages : en
Pages : 360
Book Description
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Publisher: Springer Science & Business Media
ISBN: 9783540181767
Category : Mathematics
Languages : en
Pages : 360
Book Description
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Dynamical Systems IV
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 3662067935
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.
Publisher: Springer Science & Business Media
ISBN: 3662067935
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.
Chaos and Dynamical Systems
Author: David P. Feldman
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262
Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262
Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Differential Equations and Dynamical Systems
Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Dynamical Systems on Surfaces
Author: C. Godbillon
Publisher: Springer Science & Business Media
ISBN: 3642686265
Category : Mathematics
Languages : en
Pages : 209
Book Description
These notes are an elaboration of the first part of a course on foliations which I have given at Strasbourg in 1976 and at Tunis in 1977. They are concerned mostly with dynamical sys tems in dimensions one and two, in particular with a view to their applications to foliated manifolds. An important chapter, however, is missing, which would have been dealing with structural stability. The publication of the French edition was re alized by-the efforts of the secretariat and the printing office of the Department of Mathematics of Strasbourg. I am deeply grateful to all those who contributed, in particular to Mme. Lambert for typing the manuscript, and to Messrs. Bodo and Christ for its reproduction. Strasbourg, January 1979. Table of Contents I. VECTOR FIELDS ON MANIFOLDS 1. Integration of vector fields. 1 2. General theory of orbits. 13 3. Irlvariant and minimaI sets. 18 4. Limit sets. 21 5. Direction fields. 27 A. Vector fields and isotopies. 34 II. THE LOCAL BEHAVIOUR OF VECTOR FIELDS 39 1. Stability and conjugation. 39 2. Linear differential equations. 44 3. Linear differential equations with constant coefficients. 47 4. Linear differential equations with periodic coefficients. 50 5. Variation field of a vector field. 52 6. Behaviour near a singular point. 57 7. Behaviour near a periodic orbit. 59 A. Conjugation of contractions in R. 67 III. PLANAR VECTOR FIELDS 75 1. Limit sets in the plane. 75 2. Periodic orbits. 82 3. Singular points. 90 4. The Poincare index.
Publisher: Springer Science & Business Media
ISBN: 3642686265
Category : Mathematics
Languages : en
Pages : 209
Book Description
These notes are an elaboration of the first part of a course on foliations which I have given at Strasbourg in 1976 and at Tunis in 1977. They are concerned mostly with dynamical sys tems in dimensions one and two, in particular with a view to their applications to foliated manifolds. An important chapter, however, is missing, which would have been dealing with structural stability. The publication of the French edition was re alized by-the efforts of the secretariat and the printing office of the Department of Mathematics of Strasbourg. I am deeply grateful to all those who contributed, in particular to Mme. Lambert for typing the manuscript, and to Messrs. Bodo and Christ for its reproduction. Strasbourg, January 1979. Table of Contents I. VECTOR FIELDS ON MANIFOLDS 1. Integration of vector fields. 1 2. General theory of orbits. 13 3. Irlvariant and minimaI sets. 18 4. Limit sets. 21 5. Direction fields. 27 A. Vector fields and isotopies. 34 II. THE LOCAL BEHAVIOUR OF VECTOR FIELDS 39 1. Stability and conjugation. 39 2. Linear differential equations. 44 3. Linear differential equations with constant coefficients. 47 4. Linear differential equations with periodic coefficients. 50 5. Variation field of a vector field. 52 6. Behaviour near a singular point. 57 7. Behaviour near a periodic orbit. 59 A. Conjugation of contractions in R. 67 III. PLANAR VECTOR FIELDS 75 1. Limit sets in the plane. 75 2. Periodic orbits. 82 3. Singular points. 90 4. The Poincare index.
Dynamical Systems
Author: George David Birkhoff
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 312
Book Description
Spaces of Dynamical Systems
Author: Sergei Yu. Pilyugin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110653990
Category : Science
Languages : en
Pages : 351
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110653990
Category : Science
Languages : en
Pages : 351
Book Description
Random Perturbations of Dynamical Systems
Author: Yuri Kifer
Publisher: Springer Science & Business Media
ISBN: 1461581818
Category : Mathematics
Languages : en
Pages : 301
Book Description
Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Publisher: Springer Science & Business Media
ISBN: 1461581818
Category : Mathematics
Languages : en
Pages : 301
Book Description
Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Unifying Themes in Complex Systems VII
Author: Ali A. Minai
Publisher: Springer Science & Business Media
ISBN: 3642180035
Category : Science
Languages : en
Pages : 318
Book Description
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.
Publisher: Springer Science & Business Media
ISBN: 3642180035
Category : Science
Languages : en
Pages : 318
Book Description
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.