Author: Vadim S Anishchenko
Publisher: World Scientific
ISBN: 9814500925
Category : Science
Languages : en
Pages : 399
Book Description
In this book, bifurcational mechanisms of the development, structure and properties of chaotic attractors are investigated by numerical and physical experiments based on the methods of the modern theory of nonlinear oscillations. The typical bifurcations of regular and chaotic attractors which are due to parameter variations are analyzed.Regularities of the transition to chaos via the collapse of quasiperiodic oscillations with two and three frequencies are investigated in detail. The book deals with the problems of chaotic synchronization, interaction of attractors and the phenomenon of stochastic resonance. The problems of fluctuation influence on the bifurcations and properties of chaotic attractors are investigated more closely.All principal problems are investigated by the comparison of theoretical and numerical results and data from physical experiments.
Dynamical Chaos, Models And Experiments: Appearance Routes And Stru Of Chaos In Simple Dyna Systems
Author: Vadim S Anishchenko
Publisher: World Scientific
ISBN: 9814500925
Category : Science
Languages : en
Pages : 399
Book Description
In this book, bifurcational mechanisms of the development, structure and properties of chaotic attractors are investigated by numerical and physical experiments based on the methods of the modern theory of nonlinear oscillations. The typical bifurcations of regular and chaotic attractors which are due to parameter variations are analyzed.Regularities of the transition to chaos via the collapse of quasiperiodic oscillations with two and three frequencies are investigated in detail. The book deals with the problems of chaotic synchronization, interaction of attractors and the phenomenon of stochastic resonance. The problems of fluctuation influence on the bifurcations and properties of chaotic attractors are investigated more closely.All principal problems are investigated by the comparison of theoretical and numerical results and data from physical experiments.
Publisher: World Scientific
ISBN: 9814500925
Category : Science
Languages : en
Pages : 399
Book Description
In this book, bifurcational mechanisms of the development, structure and properties of chaotic attractors are investigated by numerical and physical experiments based on the methods of the modern theory of nonlinear oscillations. The typical bifurcations of regular and chaotic attractors which are due to parameter variations are analyzed.Regularities of the transition to chaos via the collapse of quasiperiodic oscillations with two and three frequencies are investigated in detail. The book deals with the problems of chaotic synchronization, interaction of attractors and the phenomenon of stochastic resonance. The problems of fluctuation influence on the bifurcations and properties of chaotic attractors are investigated more closely.All principal problems are investigated by the comparison of theoretical and numerical results and data from physical experiments.
Elegant Chaos: Algebraically Simple Chaotic Flows
Author: Julien Clinton Sprott
Publisher: World Scientific
ISBN: 9814468673
Category : Mathematics
Languages : en
Pages : 302
Book Description
This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rössler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos.No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.
Publisher: World Scientific
ISBN: 9814468673
Category : Mathematics
Languages : en
Pages : 302
Book Description
This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rössler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos.No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Dynamique Non-linéaire Et Le Chaos
Author:
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 130
Book Description
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 130
Book Description
The Chaos Theory of Careers
Author: Robert Pryor
Publisher: Routledge
ISBN: 113523129X
Category : Business & Economics
Languages : en
Pages : 255
Book Description
The Chaos Theory of Careers outlines the application of chaos theory to the field of career development. It draws together and extends the work that the authors have been doing over the last 8 to 10 years. This text represents a new perspective on the nature of career development. It emphasizes the dimensions of careers frequently neglected by contemporary accounts of careers such as the challenges and opportunities of uncertainty, the interconnectedness of current life and the potential for information overload, career wisdom as a response to unplanned change, new approaches to vocational assessment based on emergent thinking, the place of spirituality and the search for meaning and purpose in, with and through work, the integration of being and becoming as dimensions of career development. It will be vital reading for all those working in and studying career development, either at advanced undergraduate or postgraduate level and provides a new and refreshing approach to this fast changing subject. Key themes include: Factors such as complexity, change, and contribution People's aspirations in relation to work and personal fulfilment Contemporary realities of career choice, career development and the working world
Publisher: Routledge
ISBN: 113523129X
Category : Business & Economics
Languages : en
Pages : 255
Book Description
The Chaos Theory of Careers outlines the application of chaos theory to the field of career development. It draws together and extends the work that the authors have been doing over the last 8 to 10 years. This text represents a new perspective on the nature of career development. It emphasizes the dimensions of careers frequently neglected by contemporary accounts of careers such as the challenges and opportunities of uncertainty, the interconnectedness of current life and the potential for information overload, career wisdom as a response to unplanned change, new approaches to vocational assessment based on emergent thinking, the place of spirituality and the search for meaning and purpose in, with and through work, the integration of being and becoming as dimensions of career development. It will be vital reading for all those working in and studying career development, either at advanced undergraduate or postgraduate level and provides a new and refreshing approach to this fast changing subject. Key themes include: Factors such as complexity, change, and contribution People's aspirations in relation to work and personal fulfilment Contemporary realities of career choice, career development and the working world
Chaos
Author: Kathleen Alligood
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Dynamic Systems of Development
Author: Paul van Geert
Publisher: Prentice Hall
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 326
Book Description
The author shows how simple models based on mutual interactions between children and their environments explain not only smooth evolutions but also sudden jumps, temporal regressions, cycles and chaotic change in cognitive and language development. A central concept of the system is non-linearity - small causes can have big effects and variables may be sensitive to threshold effects.
Publisher: Prentice Hall
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 326
Book Description
The author shows how simple models based on mutual interactions between children and their environments explain not only smooth evolutions but also sudden jumps, temporal regressions, cycles and chaotic change in cognitive and language development. A central concept of the system is non-linearity - small causes can have big effects and variables may be sensitive to threshold effects.
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Understanding Nonlinear Dynamics
Author: Daniel Kaplan
Publisher: Springer Science & Business Media
ISBN: 1461208238
Category : Mathematics
Languages : en
Pages : 438
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.
Publisher: Springer Science & Business Media
ISBN: 1461208238
Category : Mathematics
Languages : en
Pages : 438
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.
The Physics of Chaos in Hamiltonian Systems
Author: George M. Zaslavsky
Publisher: Imperial College Press
ISBN: 1860948618
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar(r) recurrences and their role in transport theory; dynamical models of the MaxwellOCOs Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students."
Publisher: Imperial College Press
ISBN: 1860948618
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar(r) recurrences and their role in transport theory; dynamical models of the MaxwellOCOs Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students."