Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations PDF Author: Hiroyoshi Mitake
Publisher: Springer
ISBN: 3319542087
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations PDF Author: Hiroyoshi Mitake
Publisher: Springer
ISBN: 3319542087
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.

Analysis of Monge–Ampère Equations

Analysis of Monge–Ampère Equations PDF Author: Nam Q. Le
Publisher: American Mathematical Society
ISBN: 1470474204
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes many important recent advances, including Savin's boundary localization theorem, spectral theory, and interior and boundary regularity in Sobolev and Hölder spaces with optimal assumptions. It highlights geometric aspects of the theory and connections with adjacent research areas. This self-contained book provides the necessary background and techniques in convex geometry, real analysis, and partial differential equations, presents detailed proofs of all theorems, explains subtle constructions, and includes well over a hundred exercises. It can serve as an accessible text for graduate students as well as researchers interested in this subject.

Handbook of Mathematics for Engineers and Scientists

Handbook of Mathematics for Engineers and Scientists PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1420010514
Category : Mathematics
Languages : en
Pages : 1542

Get Book Here

Book Description
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.

Pluripotential Theory

Pluripotential Theory PDF Author: Giorgio Patrizio
Publisher: Springer
ISBN: 3642364217
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampére equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics PDF Author: Vincent Guedj
Publisher: Springer Science & Business Media
ISBN: 3642236685
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.

Numerical Control: Part B

Numerical Control: Part B PDF Author: Emmanuel Trélat
Publisher: Elsevier
ISBN: 0323858260
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
Numerical Control: Part B, Volume 24 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Control problems in the coefficients and the domain for linear elliptic equations, Computational approaches for extremal geometric eigenvalue problems, Non-overlapping domain decomposition in space and time for PDE-constrained optimal control problems on networks, Feedback Control of Time-dependent Nonlinear PDEs with Applications in Fluid Dynamics, Stabilization of the Navier-Stokes equations - Theoretical and numerical aspects, Reconstruction algorithms based on Carleman estimates, and more. Other sections cover Discrete time formulations as time discretization strategies in data assimilation, Back and forth iterations/Time reversal methods, Unbalanced Optimal Transport: from Theory to Numerics, An ADMM Approach to the Exact and Approximate Controllability of Parabolic Equations, Nonlocal balance laws -- an overview over recent results, Numerics and control of conservation laws, Numerical approaches for simulation and control of superconducting quantum circuits, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on Numerical Control

Lectures on Differential Geometry

Lectures on Differential Geometry PDF Author: Bennett Chow
Publisher: American Mathematical Society
ISBN: 1470478048
Category : Mathematics
Languages : en
Pages : 753

Get Book Here

Book Description
Differential geometry is a subject related to many fields in mathematics and the sciences. The authors of this book provide a vertically integrated introduction to differential geometry and geometric analysis. The material is presented in three distinct parts: an introduction to geometry via submanifolds of Euclidean space, a first course in Riemannian geometry, and a graduate special topics course in geometric analysis, and it contains more than enough content to serve as a good textbook for a course in any of these three topics. The reader will learn about the classical theory of submanifolds, smooth manifolds, Riemannian comparison geometry, bundles, connections, and curvature, the Chern?Gauss?Bonnet formula, harmonic functions, eigenfunctions, and eigenvalues on Riemannian manifolds, minimal surfaces, the curve shortening flow, and the Ricci flow on surfaces. This will provide a pathway to further topics in geometric analysis such as Ricci flow, used by Hamilton and Perelman to solve the Poincar‚ and Thurston geometrization conjectures, mean curvature flow, and minimal submanifolds. The book is primarily aimed at graduate students in geometric analysis, but it will also be of interest to postdoctoral researchers and established mathematicians looking for a refresher or deeper exploration of the topic.

Mathematical Models and Integration Methods

Mathematical Models and Integration Methods PDF Author: Oleg V. Kaptsov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111546667
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
The book compiles works presented at a seminar aiming to attract global experts in differential equations, mathematical modeling, and integration methods. It covers classical and contemporary integration techniques for partial differential equations, including Monge and Darboux's approaches and their extensions. Additionally, it introduces a novel theoretical model for plane turbulent flows, presents gravitational equations derived from the principle of least action, and explores symmetry-preserving conservative finite-difference schemes for hydrodynamic-type equations. Analytical solutions for Maxwell's equations in incompressible viscoelastic mediums are examined, alongside theoretical-group analysis of wake mathematical models and reduction to ordinary differential equations. The book also delves into special classes of two-dimensional ideal fluid motion and advancements in discrete orthogonal polynomial theory, showcasing rapid decay properties near interval boundaries. In conclusion, this comprehensive collection is indispensable for researchers and practitioners in applied mathematics, fluid dynamics, and computational modeling, providing valuable insights into cutting-edge methods and solutions in the field.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1346

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1770

Get Book Here

Book Description