Author: Hejia Gao
Publisher: John Wiley & Sons
ISBN: 1394255276
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, the book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. The book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange’s equation method, and Lyapunov’s stability theorem Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems
Author: Hejia Gao
Publisher: John Wiley & Sons
ISBN: 1394255276
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, the book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. The book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange’s equation method, and Lyapunov’s stability theorem Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Publisher: John Wiley & Sons
ISBN: 1394255276
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, the book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. The book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange’s equation method, and Lyapunov’s stability theorem Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems
Author: Hejia Gao
Publisher: Wiley-IEEE Press
ISBN: 9781394255276
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, this book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. This book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues in the study of flexible systems, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange's equation method, and Lyapunov's stability theorem Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Publisher: Wiley-IEEE Press
ISBN: 9781394255276
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Comprehensive treatment of several representative flexible systems, ranging from dynamic modeling and intelligent control design through to stability analysis Fully illustrated throughout, Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems proposes high-efficiency modeling methods and novel intelligent control strategies for several representative flexible systems developed by means of neural networks. It discusses tracking control of multi-link flexible manipulators, vibration control of flexible buildings under natural disasters, and fault-tolerant control of bionic flexible flapping-wing aircraft and addresses common challenges like external disturbances, dynamic uncertainties, output constraints, and actuator faults. Expanding on its theoretical deliberations, this book includes many case studies demonstrating how the proposed approaches work in practice. Experimental investigations are carried out on Quanser Rotary Flexible Link, Quanser 2 DOF Serial Flexible Link, Quanser Active Mass Damper, and Quanser Smart Structure platforms. This book starts by providing an overview of dynamic modeling and intelligent control of flexible systems, introducing several important issues in the study of flexible systems, along with modeling and control methods of three typical flexible systems. Other topics include: Foundational mathematical preliminaries including the Hamilton principle, model discretization methods, Lagrange's equation method, and Lyapunov's stability theorem Dynamic modeling of a single-link flexible robotic manipulator and vibration control design for a string with the boundary time-varying output constraint Unknown time-varying disturbances, such as earthquakes and strong winds, and how to suppress them and use MATLAB and Quanser to verify effectiveness of a proposed control Adaptive vibration control methods for a single-floor building-like structure equipped with an active mass damper (AMD) Dynamic Modeling and Neural Network-Based Intelligent Control of Flexible Systems is an invaluable resource for researchers and engineers seeking high-efficiency modeling methods and neural-network-based control solutions for flexible systems, along with industry engineers and researchers who are interested in control theory and applications and students in related programs of study.
Intelligent Control Based on Flexible Neural Networks
Author: M. Teshnehlab
Publisher: Springer Science & Business Media
ISBN: 9401591873
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 9401591873
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neural Systems for Control
Author: Omid Omidvar
Publisher: Elsevier
ISBN: 0080537391
Category : Computers
Languages : en
Pages : 375
Book Description
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Publisher: Elsevier
ISBN: 0080537391
Category : Computers
Languages : en
Pages : 375
Book Description
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Control of Flexible-link Manipulators Using Neural Networks
Author: H.A. Talebi
Publisher: Springer Science & Business Media
ISBN: 9781852334093
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.
Publisher: Springer Science & Business Media
ISBN: 9781852334093
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.
Dynamic Modeling and Boundary Control of Flexible Axially Moving System
Author: Yu Liu
Publisher: Springer Nature
ISBN: 9811969418
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
The main objectives of the book are to introduce the design method of boundary control strategies for the axially moving structures to reduce their vibration. This book provides the reader with a thorough grounding in the boundary controller design. Our goal is to provide advanced boundary controller design methods and their stability analysis methods and offer simulation examples and MATLAB programs for each boundary control algorithm. For each chapter, several engineering application examples are given and the contents of each chapter in this book are independent, so that readers can just read their own needs. In this book, all the control algorithms and their programs are described separately and classified by the chapter name, which can be run successfully in MATLAB. The book can benefit researchers, engineers, and graduate students in the fields of PDE modeling and boundary vibration control of flexible structures.
Publisher: Springer Nature
ISBN: 9811969418
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
The main objectives of the book are to introduce the design method of boundary control strategies for the axially moving structures to reduce their vibration. This book provides the reader with a thorough grounding in the boundary controller design. Our goal is to provide advanced boundary controller design methods and their stability analysis methods and offer simulation examples and MATLAB programs for each boundary control algorithm. For each chapter, several engineering application examples are given and the contents of each chapter in this book are independent, so that readers can just read their own needs. In this book, all the control algorithms and their programs are described separately and classified by the chapter name, which can be run successfully in MATLAB. The book can benefit researchers, engineers, and graduate students in the fields of PDE modeling and boundary vibration control of flexible structures.
IUTAM Symposium on Intelligent Multibody Systems – Dynamics, Control, Simulation
Author: Evtim Zahariev
Publisher: Springer
ISBN: 3030005275
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
This volume, which brings together research presented at the IUTAM Symposium Intelligent Multibody Systems – Dynamics, Control, Simulation, held at Sozopol, Bulgaria, September 11-15, 2017, focuses on preliminary virtual simulation of the dynamics of motion, and analysis of loading of the devices and of their behaviour caused by the working conditions and natural phenomena. This requires up-to-date methods for dynamics analysis and simulation, novel methods for numerical solution of ODE and DAE, real-time simulation, passive, semi-passive and active control algorithms. Applied examples are mechatronic (intelligent) multibody systems, autonomous vehicles, space structures, structures exposed to external and seismic excitations, large flexible structures and wind generators, robots and bio-robots. The book covers the following subjects: -Novel methods in multibody system dynamics; -Real-time dynamics; -Dynamic models of passive and active mechatronic devices; -Vehicle dynamics and control; -Structural dynamics; -Deflection and vibration suppression; -Numerical integration of ODE and DAE for large scale and stiff multibody systems; -Model reduction of large-scale flexible systems. The book will be of interest for scientists and academicians, PhD students and engineers at universities and scientific institutes.
Publisher: Springer
ISBN: 3030005275
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
This volume, which brings together research presented at the IUTAM Symposium Intelligent Multibody Systems – Dynamics, Control, Simulation, held at Sozopol, Bulgaria, September 11-15, 2017, focuses on preliminary virtual simulation of the dynamics of motion, and analysis of loading of the devices and of their behaviour caused by the working conditions and natural phenomena. This requires up-to-date methods for dynamics analysis and simulation, novel methods for numerical solution of ODE and DAE, real-time simulation, passive, semi-passive and active control algorithms. Applied examples are mechatronic (intelligent) multibody systems, autonomous vehicles, space structures, structures exposed to external and seismic excitations, large flexible structures and wind generators, robots and bio-robots. The book covers the following subjects: -Novel methods in multibody system dynamics; -Real-time dynamics; -Dynamic models of passive and active mechatronic devices; -Vehicle dynamics and control; -Structural dynamics; -Deflection and vibration suppression; -Numerical integration of ODE and DAE for large scale and stiff multibody systems; -Model reduction of large-scale flexible systems. The book will be of interest for scientists and academicians, PhD students and engineers at universities and scientific institutes.
Robust Control Algorithms for Two-link Flexible Manipulators
Author: Kshetrimayum Lochan
Publisher: CRC Press
ISBN: 1040152260
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Various modelling and control of two-link flexible manipulators are presented in this book. The lumped parameter modelling method and the assumed modes method modelling are comprehensively reviewed. The book also reviews the trajectory tracking problem and tip trajectory tracking problem along with the suppression of tip deflection of the links. An exponential time varying signal and a chaotic signal are considered as the desired trajectories. The identical/ non-identical slave manipulator is synchronised with the controlled master manipulator so that the slave manipulator indirectly follows the desired manipulator.
Publisher: CRC Press
ISBN: 1040152260
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Various modelling and control of two-link flexible manipulators are presented in this book. The lumped parameter modelling method and the assumed modes method modelling are comprehensively reviewed. The book also reviews the trajectory tracking problem and tip trajectory tracking problem along with the suppression of tip deflection of the links. An exponential time varying signal and a chaotic signal are considered as the desired trajectories. The identical/ non-identical slave manipulator is synchronised with the controlled master manipulator so that the slave manipulator indirectly follows the desired manipulator.
Robust Control Algorithms for Flexible Manipulators
Author: Kshetrimayum Lochan
Publisher: CRC Press
ISBN: 1040152201
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Various modelling and control of two-link flexible manipulators are presented in this book. The lumped parameter modelling method and the assumed modes method modelling are comprehensively reviewed. The book also reviews the trajectory tracking problem and tip trajectory tracking problem along with the suppression of tip deflection of the links. An exponential time varying signal and a chaotic signal are considered as the desired trajectories. The identical/ non-identical slave manipulator is synchronised with the controlled master manipulator so that the slave manipulator indirectly follows the desired manipulator.
Publisher: CRC Press
ISBN: 1040152201
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Various modelling and control of two-link flexible manipulators are presented in this book. The lumped parameter modelling method and the assumed modes method modelling are comprehensively reviewed. The book also reviews the trajectory tracking problem and tip trajectory tracking problem along with the suppression of tip deflection of the links. An exponential time varying signal and a chaotic signal are considered as the desired trajectories. The identical/ non-identical slave manipulator is synchronised with the controlled master manipulator so that the slave manipulator indirectly follows the desired manipulator.
Robot Manipulators
Author: Agustin Jimenez
Publisher: BoD – Books on Demand
ISBN: 9533070730
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
This book presents the most recent research advances in robot manipulators. It offers a complete survey to the kinematic and dynamic modelling, simulation, computer vision, software engineering, optimization and design of control algorithms applied for robotic systems. It is devoted for a large scale of applications, such as manufacturing, manipulation, medicine and automation. Several control methods are included such as optimal, adaptive, robust, force, fuzzy and neural network control strategies. The trajectory planning is discussed in details for point-to-point and path motions control. The results in obtained in this book are expected to be of great interest for researchers, engineers, scientists and students, in engineering studies and industrial sectors related to robot modelling, design, control, and application. The book also details theoretical, mathematical and practical requirements for mathematicians and control engineers. It surveys recent techniques in modelling, computer simulation and implementation of advanced and intelligent controllers.
Publisher: BoD – Books on Demand
ISBN: 9533070730
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
This book presents the most recent research advances in robot manipulators. It offers a complete survey to the kinematic and dynamic modelling, simulation, computer vision, software engineering, optimization and design of control algorithms applied for robotic systems. It is devoted for a large scale of applications, such as manufacturing, manipulation, medicine and automation. Several control methods are included such as optimal, adaptive, robust, force, fuzzy and neural network control strategies. The trajectory planning is discussed in details for point-to-point and path motions control. The results in obtained in this book are expected to be of great interest for researchers, engineers, scientists and students, in engineering studies and industrial sectors related to robot modelling, design, control, and application. The book also details theoretical, mathematical and practical requirements for mathematicians and control engineers. It surveys recent techniques in modelling, computer simulation and implementation of advanced and intelligent controllers.