Author: John M. Lewis
Publisher: Cambridge University Press
ISBN: 0521851556
Category : Mathematics
Languages : en
Pages : 601
Book Description
Publisher description
Dynamic Data Assimilation
Author: John M. Lewis
Publisher: Cambridge University Press
ISBN: 0521851556
Category : Mathematics
Languages : en
Pages : 601
Book Description
Publisher description
Publisher: Cambridge University Press
ISBN: 0521851556
Category : Mathematics
Languages : en
Pages : 601
Book Description
Publisher description
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)
Author: Seon Ki Park
Publisher: Springer Science & Business Media
ISBN: 3642350887
Category : Science
Languages : en
Pages : 736
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Publisher: Springer Science & Business Media
ISBN: 3642350887
Category : Science
Languages : en
Pages : 736
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Principles of Data Assimilation
Author: Seon Ki Park
Publisher: Cambridge University Press
ISBN: 1108923895
Category : Science
Languages : en
Pages : 413
Book Description
Data assimilation is theoretically founded on probability, statistics, control theory, information theory, linear algebra, and functional analysis. At the same time, data assimilation is a very practical subject, given its goal of estimating the posterior probability density function in realistic high-dimensional applications. This puts data assimilation at the intersection between the contrasting requirements of theory and practice. Based on over twenty years of teaching courses in data assimilation, Principles of Data Assimilation introduces a unique perspective that is firmly based on mathematical theories, but also acknowledges practical limitations of the theory. With the inclusion of numerous examples and practical case studies throughout, this new perspective will help students and researchers to competently interpret data assimilation results and to identify critical challenges of developing data assimilation algorithms. The benefit of information theory also introduces new pathways for further development, understanding, and improvement of data assimilation methods.
Publisher: Cambridge University Press
ISBN: 1108923895
Category : Science
Languages : en
Pages : 413
Book Description
Data assimilation is theoretically founded on probability, statistics, control theory, information theory, linear algebra, and functional analysis. At the same time, data assimilation is a very practical subject, given its goal of estimating the posterior probability density function in realistic high-dimensional applications. This puts data assimilation at the intersection between the contrasting requirements of theory and practice. Based on over twenty years of teaching courses in data assimilation, Principles of Data Assimilation introduces a unique perspective that is firmly based on mathematical theories, but also acknowledges practical limitations of the theory. With the inclusion of numerous examples and practical case studies throughout, this new perspective will help students and researchers to competently interpret data assimilation results and to identify critical challenges of developing data assimilation algorithms. The benefit of information theory also introduces new pathways for further development, understanding, and improvement of data assimilation methods.
Uncertainties in Numerical Weather Prediction
Author: Haraldur Olafsson
Publisher: Elsevier
ISBN: 0128157100
Category : Science
Languages : en
Pages : 366
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. - Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers - Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts - Includes references to climate prediction models to allow applications of these techniques for climate simulations
Publisher: Elsevier
ISBN: 0128157100
Category : Science
Languages : en
Pages : 366
Book Description
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. - Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers - Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts - Includes references to climate prediction models to allow applications of these techniques for climate simulations
Probabilistic Forecasting and Bayesian Data Assimilation
Author: Sebastian Reich
Publisher: Cambridge University Press
ISBN: 1107069394
Category : Computers
Languages : en
Pages : 308
Book Description
This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.
Publisher: Cambridge University Press
ISBN: 1107069394
Category : Computers
Languages : en
Pages : 308
Book Description
This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)
Author: Seon Ki Park
Publisher: Springer
ISBN: 3319434152
Category : Science
Languages : en
Pages : 576
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Publisher: Springer
ISBN: 3319434152
Category : Science
Languages : en
Pages : 576
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Data Assimilation Fundamentals
Author: Geir Evensen
Publisher: Springer Nature
ISBN: 3030967093
Category : Science
Languages : en
Pages : 251
Book Description
This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.
Publisher: Springer Nature
ISBN: 3030967093
Category : Science
Languages : en
Pages : 251
Book Description
This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.
50th Anniversary of the Metaphorical Butterfly Effect since Lorenz (1972)
Author: Bo-Wen Shen
Publisher: MDPI AG
ISBN: 3036589104
Category : Education
Languages : en
Pages : 338
Book Description
Celebrate the 50th anniversary of the metaphorical butterfly effect, born from Edward Lorenz's 1963 work on initial condition sensitivity. In 1972, it became a metaphor for illustrating how minor changes could yield an organized system. Lorenz Models: Chaos & Regime Changes Explore Lorenz models' 1960-2008 evolution, chaos theory, and attractors. Unraveling High-dimensional Instability Challenge norms in "Butterfly Effect without Chaos?" as non-chaotic elements contribute uniquely. Modeling Atmospheric Dynamics Delve into atmospheric dynamics via "Storm Sensitivity Study." Navigating Data Assimilation Explore data assimilation's dance in chaotic and nonchaotic settings via the observability Gramian. Chaos, Instability, Sensitivities Explore chaos, instability, and sensitivities with Lorenz 1963 & 1969 models. Unraveling Tropical Mysteries Investigate tropical atmospheric instability, uncovering oscillation origins and cloud-radiation interactions. Chaos and Order Enter atmospheric regimes, exploring attractor coexistence and predictability. The Art of Prediction Peer into predictability realms, tracing the "butterfly effect's" impact on predictions. Navigating Typhoons Journey through typhoons, exploring rainfall and typhoon trajectory prediction. Analyzing Sea Surface Temperature Examine nonlinear analysis for classification. Computational Fluid Dynamics Immerse in geophysical fluid dynamics progress, simulating atmospheric phenomena.
Publisher: MDPI AG
ISBN: 3036589104
Category : Education
Languages : en
Pages : 338
Book Description
Celebrate the 50th anniversary of the metaphorical butterfly effect, born from Edward Lorenz's 1963 work on initial condition sensitivity. In 1972, it became a metaphor for illustrating how minor changes could yield an organized system. Lorenz Models: Chaos & Regime Changes Explore Lorenz models' 1960-2008 evolution, chaos theory, and attractors. Unraveling High-dimensional Instability Challenge norms in "Butterfly Effect without Chaos?" as non-chaotic elements contribute uniquely. Modeling Atmospheric Dynamics Delve into atmospheric dynamics via "Storm Sensitivity Study." Navigating Data Assimilation Explore data assimilation's dance in chaotic and nonchaotic settings via the observability Gramian. Chaos, Instability, Sensitivities Explore chaos, instability, and sensitivities with Lorenz 1963 & 1969 models. Unraveling Tropical Mysteries Investigate tropical atmospheric instability, uncovering oscillation origins and cloud-radiation interactions. Chaos and Order Enter atmospheric regimes, exploring attractor coexistence and predictability. The Art of Prediction Peer into predictability realms, tracing the "butterfly effect's" impact on predictions. Navigating Typhoons Journey through typhoons, exploring rainfall and typhoon trajectory prediction. Analyzing Sea Surface Temperature Examine nonlinear analysis for classification. Computational Fluid Dynamics Immerse in geophysical fluid dynamics progress, simulating atmospheric phenomena.
Applications of Data Assimilation and Inverse Problems in the Earth Sciences
Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
ISBN: 1009180401
Category : Mathematics
Languages : en
Pages : 369
Book Description
A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.
Publisher: Cambridge University Press
ISBN: 1009180401
Category : Mathematics
Languages : en
Pages : 369
Book Description
A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.
Data Assimilation: Methods, Algorithms, and Applications
Author: Mark Asch
Publisher: SIAM
ISBN: 1611974534
Category : Mathematics
Languages : en
Pages : 310
Book Description
Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.
Publisher: SIAM
ISBN: 1611974534
Category : Mathematics
Languages : en
Pages : 310
Book Description
Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.