Author: E. Belhassen
Publisher: Springer Science & Business Media
ISBN: 9401712999
Category : Science
Languages : en
Pages : 108
Book Description
As drought tolerance is a multidirnensional stress, drought tolerance study is a multidisciplinary adventure. In 1992, the network INTERDROUGHT was created with the objective of joining the scientists of the different fields of research involved in drought tolerance study. The network was funded by the EEC and gathered 25 European teams specialized in molecular biology, physiology and geneties. 1\vo workshops were successively organized in 1993 in Sitges (Spain) and in 1994 in Ischia (Italy). After those two European workshops, the necessity of opening the network to the whole scientific community was already clear, and in 1995 the first INTERDROUGHT international conference was held in Montpellier (France). During this meeting, eleven speakers were invited to present a review in their field of research, in a way accessible to all researchers and students, especially those who are not familiar wlth one of the three fields of interest. These eleven reviews are presented in this book. From these reviews three major difficulties arose for drought tolerance irnprovement: - the definition of the drought stress that plants experience; -the differentiation between non adaptive and adaptive response to drought stress; -the identification of the adaptive responses that improved drought yield without decreasing significantly the potential yield. The use of integrated strategies of research will certainly provide irnportant results, such as the recent data obtained on molecular and physiologieal analysis of Arabidopsis mutants.
Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis
Author: E. Belhassen
Publisher: Springer Science & Business Media
ISBN: 9401712999
Category : Science
Languages : en
Pages : 108
Book Description
As drought tolerance is a multidirnensional stress, drought tolerance study is a multidisciplinary adventure. In 1992, the network INTERDROUGHT was created with the objective of joining the scientists of the different fields of research involved in drought tolerance study. The network was funded by the EEC and gathered 25 European teams specialized in molecular biology, physiology and geneties. 1\vo workshops were successively organized in 1993 in Sitges (Spain) and in 1994 in Ischia (Italy). After those two European workshops, the necessity of opening the network to the whole scientific community was already clear, and in 1995 the first INTERDROUGHT international conference was held in Montpellier (France). During this meeting, eleven speakers were invited to present a review in their field of research, in a way accessible to all researchers and students, especially those who are not familiar wlth one of the three fields of interest. These eleven reviews are presented in this book. From these reviews three major difficulties arose for drought tolerance irnprovement: - the definition of the drought stress that plants experience; -the differentiation between non adaptive and adaptive response to drought stress; -the identification of the adaptive responses that improved drought yield without decreasing significantly the potential yield. The use of integrated strategies of research will certainly provide irnportant results, such as the recent data obtained on molecular and physiologieal analysis of Arabidopsis mutants.
Publisher: Springer Science & Business Media
ISBN: 9401712999
Category : Science
Languages : en
Pages : 108
Book Description
As drought tolerance is a multidirnensional stress, drought tolerance study is a multidisciplinary adventure. In 1992, the network INTERDROUGHT was created with the objective of joining the scientists of the different fields of research involved in drought tolerance study. The network was funded by the EEC and gathered 25 European teams specialized in molecular biology, physiology and geneties. 1\vo workshops were successively organized in 1993 in Sitges (Spain) and in 1994 in Ischia (Italy). After those two European workshops, the necessity of opening the network to the whole scientific community was already clear, and in 1995 the first INTERDROUGHT international conference was held in Montpellier (France). During this meeting, eleven speakers were invited to present a review in their field of research, in a way accessible to all researchers and students, especially those who are not familiar wlth one of the three fields of interest. These eleven reviews are presented in this book. From these reviews three major difficulties arose for drought tolerance irnprovement: - the definition of the drought stress that plants experience; -the differentiation between non adaptive and adaptive response to drought stress; -the identification of the adaptive responses that improved drought yield without decreasing significantly the potential yield. The use of integrated strategies of research will certainly provide irnportant results, such as the recent data obtained on molecular and physiologieal analysis of Arabidopsis mutants.
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops
Author: Matthew A. Jenks
Publisher: Springer Science & Business Media
ISBN: 1402055773
Category : Science
Languages : en
Pages : 819
Book Description
With near-comprehensive coverage of new advances in crop breeding for drought and salinity stress tolerance, this timely work seeks to integrate the most recent findings about key biological determinants of plant stress tolerance with modern crop improvement strategies. This volume is unique because is provides exceptionally wide coverage of current knowledge and expertise being applied in drought and salt tolerance research.
Publisher: Springer Science & Business Media
ISBN: 1402055773
Category : Science
Languages : en
Pages : 819
Book Description
With near-comprehensive coverage of new advances in crop breeding for drought and salinity stress tolerance, this timely work seeks to integrate the most recent findings about key biological determinants of plant stress tolerance with modern crop improvement strategies. This volume is unique because is provides exceptionally wide coverage of current knowledge and expertise being applied in drought and salt tolerance research.
Drought Stress Tolerance in Plants, Vol 2
Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319324233
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.
Publisher: Springer
ISBN: 3319324233
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.
Drought Stress Tolerance in Plants, Vol 1
Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319288997
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.
Publisher: Springer
ISBN: 3319288997
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.
Drought Stress in Maize (Zea mays L.)
Author: Muhammad Aslam
Publisher: Springer
ISBN: 3319254421
Category : Science
Languages : en
Pages : 79
Book Description
This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.
Publisher: Springer
ISBN: 3319254421
Category : Science
Languages : en
Pages : 79
Book Description
This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.
Plant Metabolites and Regulation under Environmental Stress
Author: Parvaiz Ahmad
Publisher: Academic Press
ISBN: 0128126906
Category : Science
Languages : en
Pages : 450
Book Description
Plant Metabolites and Regulation Under Environmental Stress presents the latest research on both primary and secondary metabolites. The book sheds light on the metabolic pathways of primary and secondary metabolites, the role of these metabolites in plants, and the environmental impact on the regulation of these metabolites. Users will find a comprehensive, practical reference that aids researchers in their understanding of the role of plant metabolites in stress tolerance. - Highlights new advances in the understanding of plant metabolism - Features 17 protocols and methods for analysis of important plant secondary metabolites - Includes sections on environmental adaptations and plant metabolites, plant metabolites and breeding, plant microbiome and metabolites, and plant metabolism under non-stress conditions
Publisher: Academic Press
ISBN: 0128126906
Category : Science
Languages : en
Pages : 450
Book Description
Plant Metabolites and Regulation Under Environmental Stress presents the latest research on both primary and secondary metabolites. The book sheds light on the metabolic pathways of primary and secondary metabolites, the role of these metabolites in plants, and the environmental impact on the regulation of these metabolites. Users will find a comprehensive, practical reference that aids researchers in their understanding of the role of plant metabolites in stress tolerance. - Highlights new advances in the understanding of plant metabolism - Features 17 protocols and methods for analysis of important plant secondary metabolites - Includes sections on environmental adaptations and plant metabolites, plant metabolites and breeding, plant microbiome and metabolites, and plant metabolism under non-stress conditions
Abscisic Acid: Metabolism, Transport and Signaling
Author: Da-Peng Zhang
Publisher: Springer
ISBN: 9401794243
Category : Science
Languages : en
Pages : 464
Book Description
This book provides a comprehensive review of all aspects of the molecular and cell biology of abscisic acid (ABA) metabolism, transport and signal transduction, covering our current understanding of ABA as well as research trends. The agricultural significance of ABA metabolism, transport and signal transduction is also discussed. The phytohormone ABA regulates many aspects of plant development and plays a central role in plant adaptation to environmental stresses. Over the past few decades, considerable advances have been made in the study of ABA metabolism, transport and signal transduction, greatly deepening our understanding of the underlying mechanisms of ABA function at the molecular, cell and whole-plant level and helping us improve crops’ environmental tolerance. This book provides a valuable resource for researchers and advanced students interested in plant biology and agriculture.
Publisher: Springer
ISBN: 9401794243
Category : Science
Languages : en
Pages : 464
Book Description
This book provides a comprehensive review of all aspects of the molecular and cell biology of abscisic acid (ABA) metabolism, transport and signal transduction, covering our current understanding of ABA as well as research trends. The agricultural significance of ABA metabolism, transport and signal transduction is also discussed. The phytohormone ABA regulates many aspects of plant development and plays a central role in plant adaptation to environmental stresses. Over the past few decades, considerable advances have been made in the study of ABA metabolism, transport and signal transduction, greatly deepening our understanding of the underlying mechanisms of ABA function at the molecular, cell and whole-plant level and helping us improve crops’ environmental tolerance. This book provides a valuable resource for researchers and advanced students interested in plant biology and agriculture.
Physiology and Molecular Biology of Stress Tolerance in Plants
Author: K.V. Madhava Rao
Publisher: Springer Science & Business Media
ISBN: 9781402042249
Category : Science
Languages : en
Pages : 372
Book Description
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
Publisher: Springer Science & Business Media
ISBN: 9781402042249
Category : Science
Languages : en
Pages : 372
Book Description
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
Abiotic Stress Response in Plants
Author: Arun Shanker
Publisher: BoD – Books on Demand
ISBN: 9533076720
Category : Science
Languages : en
Pages : 362
Book Description
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.
Publisher: BoD – Books on Demand
ISBN: 9533076720
Category : Science
Languages : en
Pages : 362
Book Description
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.
Plant Stress Tolerance
Author: Ramanjulu Sunkar
Publisher: Springer Nature
ISBN: 1071639730
Category :
Languages : en
Pages : 293
Book Description
Publisher: Springer Nature
ISBN: 1071639730
Category :
Languages : en
Pages : 293
Book Description