Drought phenotyping in crops: From theory to practice

Drought phenotyping in crops: From theory to practice PDF Author: Philippe Monneveux
Publisher: Frontiers E-books
ISBN: 2889191818
Category :
Languages : en
Pages : 238

Get Book Here

Book Description
This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.

Drought phenotyping in crops: From theory to practice

Drought phenotyping in crops: From theory to practice PDF Author: Philippe Monneveux
Publisher: Frontiers E-books
ISBN: 2889191818
Category :
Languages : en
Pages : 238

Get Book Here

Book Description
This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.

Plant Phenotyping and Phenomics for Plant Breeding

Plant Phenotyping and Phenomics for Plant Breeding PDF Author: Gustavo A. Lobos
Publisher: Frontiers Media SA
ISBN: 2889455327
Category :
Languages : en
Pages : 369

Get Book Here

Book Description
As a consequence of the global climate change, both the reduction on yield potential and the available surface area of cultivated species will compromise the production of food needed for a constant growing population. There is consensus about the significant gap between world food consumption projected for the coming decades and the expected crop yield-improvements, which are estimated to be insufficient to meet the demand. The complexity of this scenario will challenge breeders to develop cultivars that are better adapted to adverse environmental conditions, therefore incorporating a new set of morpho-physiological and physico-chemical traits; a large number of these traits have been found to be linked to heat and drought tolerance. Currently, the only reasonable way to satisfy all these demands is through acquisition of high-dimensional phenotypic data (high-throughput phenotyping), allowing researchers with a holistic comprehension of plant responses, or ‘Phenomics’. Phenomics is still under development. This Research Topic aims to be a contribution to the progress of methodologies and analysis to help understand the performance of a genotype in a given environment.

Plant Breeding for Water-Limited Environments

Plant Breeding for Water-Limited Environments PDF Author: Abraham Blum
Publisher: Springer Science & Business Media
ISBN: 1441974911
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.

Drought Stress in Maize (Zea mays L.)

Drought Stress in Maize (Zea mays L.) PDF Author: Muhammad Aslam
Publisher: Springer
ISBN: 3319254421
Category : Science
Languages : en
Pages : 79

Get Book Here

Book Description
This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.

Abiotic Stress in Plants

Abiotic Stress in Plants PDF Author: Shah Fahad
Publisher: BoD – Books on Demand
ISBN: 1838810552
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide.

Drought Adaptation in Cereals

Drought Adaptation in Cereals PDF Author: Jean-Marcel Ribaut
Publisher: CRC Press
ISBN: 9781560222781
Category : Technology & Engineering
Languages : en
Pages : 696

Get Book Here

Book Description
Learn how to best improve yield in cereal plants—even in dry conditions The impact of drought on crop production can be economically devastating. Drought Adaptation in Cereals provides a comprehensive review of the latest research on the tolerance of cereal crops to water-limited conditions. Renowned experts extensively describe basic concepts and cutting-edge research results to clearly reveal all facets of drought adaptation in cereals. More than simply a fine reference for plant biology and plant improvement under water-limited conditions, this book spotlights the most relevant biological approaches from plant phenotyping to functional genomics. The need to understand plant response to the lack of water is integral to forming strategies to best manage crops. Drought Adaptation in Cereals starts by offering an overview of the biological basis and defines the adaptive mechanisms found in plants under water-limited conditions. Different approaches are presented to provide understanding of plant genetics basics and plant breeding, including phenotyping, physiology, and biotechnology. The book details drought adaptation mechanisms at the cellular, organ, and entire plant levels, focusing on plant metabolism and gene functions. This resource is extensively referenced and contains tables, charts, and figures to clearly present data and enhance understanding. After a foreword by J. O'Toole and a prologue by A. Blum, Drought Adaptation in Cereals presents a full spectrum of informative topics from other internationally respected scientists. These include: drought’s economic impact (P. Heisey) genotype-by-environment interactions (M. Cooper) secondary traits for drought adaptation (P. Monneveux) leaf growth (F. Tardieu) carbon isotope discrimination (T. Condon) drought adaptation in barley (M. Sorrells), maize (M. Sawkins), rice (R. Lafitte), sorghum (A. Borrell) and wheat (M. Reynolds) carbohydrate metabolism (A. Tiessen) the role of abscisic acid (T. Setter) protection mechanisms and stress proteins (L. Mtwisha) genetic basis of ion homeostasis and water deficit (H. Bohnert) transcriptional factors (K. Yamaguchi-Shinozaki) resurrection plants (D. Bartels) Drought Adaptation in Cereals is a unique, vital reference for scientists, educators, and students in plant biology, agronomy, and natural resources management.

Crop Breeding for Drought Resistance

Crop Breeding for Drought Resistance PDF Author: Lijun Luo
Publisher: Frontiers Media SA
ISBN: 288945861X
Category :
Languages : en
Pages : 229

Get Book Here

Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Genomics and Breeding for Climate-Resilient Crops

Genomics and Breeding for Climate-Resilient Crops PDF Author: Chittaranjan Kole
Publisher: Springer Science & Business Media
ISBN: 3642370454
Category : Science
Languages : en
Pages : 556

Get Book Here

Book Description
Climate change is expected to have a drastic impact on agronomic conditions including temperature, precipitation, soil nutrients, and the incidence of disease pests, to name a few. To face this looming threat, significant progress in developing new breeding strategies has been made over the last few decades. The first volume of Genomics and Breeding for Climate-Resilient Crops presents the basic concepts and strategies for developing climate-resilient crop varieties. Topics covered include: conservation, evaluation and utilization of biodiversity; identification of traits, genes and crops of the future; genomic and molecular tools; genetic engineering; participatory and evolutionary breeding; bioinformatics tools to support breeding; funding and networking support; and intellectual property, regulatory issues, social and political dimensions. ​

Phenotyping for Plant Breeding

Phenotyping for Plant Breeding PDF Author: Siva Kumar Panguluri
Publisher: Springer Science & Business Media
ISBN: 1461483204
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description
Plant phenotyping is the thorough assessment of plant traits such as growth, development, adaptation, yield, quality, tolerance, resistance, architecture, and the basic measurement of individual quantitative parameters that form the basis for understanding of traits. Genetic approaches to understand plant growth and development have always benefitted from phenotyping techniques that are simple, rapid and measurable in units. The forward genetics approach is all about understanding the trait inheritance using the phenotypic data and in most cases it is the mutant phenotypes that formed the basis for understanding of gene functions. With rapid advancement of genotyping techniques, high throughput genotyping has become a reality at costs people never imagined to be that low, but the phenotypic methods did not receive same attention. However, without quality phenotyping data the genotyping data cannot be effectively put to use in plant improvement. Therefore efforts are underway to develop high-throughput phenotyping methods in plants to keep pace with revolutionary advancement in genotyping techniques to enhance the efficiency of crop improvement programs. Keeping this in mind, we described in this book the best phenomic tools available for trait improvement in some of the world’s most important crop plants.

Abiotic and Biotic Stress in Plants

Abiotic and Biotic Stress in Plants PDF Author: Alexandre De Oliveira
Publisher: BoD – Books on Demand
ISBN: 1789238110
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
Plants are subjected to numerous environmental stresses, which can be classified into two broad areas: abiotic and biotic stresses. While the first is considered the damage done to an organism by other living organisms, the latter occurs as a result of a negative impact of non-living factors on the organisms. In this scenario, the current most accepted opinion of scientists is that both biotic and abiotic factors in nature and agroecosystems are affected by climate change, which may lead to significant crop yield decreases worldwide. We should take into consideration not only this environmental concern but also the fact that 20 years from now the earth's population will need 55% more food than it can produce now. Therefore, it is crucial to address such concerns and bring about possible solutions to future plant stress-related outcomes that might affect global agriculture. This book intends to provide the reader with a comprehensive overview of both biotic and abiotic stresses through 10 chapters that include case studies and literature reviews about these topics. There will be a particular focus on understanding the physiological, biochemical, and molecular changes observed in stressed plants as well as the mechanisms underlying stress tolerance in plants.