Author: Neil Osheroff
Publisher: Springer Science & Business Media
ISBN: 1592590578
Category : Medical
Languages : en
Pages : 331
Book Description
Beginning with the Escherichia coli ? protein, or bacterial DNA topoisomerase I, an ever-increasing number of enzymes have been identified that catalyze changes in the linkage of DNA strands. DNA topoisomerases are ubiquitous in nature and have been shown to play critical roles in most p- cesses involving DNA, including DNA replication, transcription, and rec- bination. These enzymes further constitute the cellular targets of a number of clinically important antibacterial and anticancer agents. Thus, further studies of DNA topology and DNA topoisomerases are critical to advance our und- standing of the basic biological processes required for cell cycle progression, cell division, genomic stability, and development. In addition, these studies will continue to provide critical insights into the cytotoxic action of drugs that target DNA topoisomerases. Such mechanistic studies have already played an important role in the development and clinical application of antimicrobial and chemotherapeutic agents. The two volumes of DNA Topoisomerase Protocols are designed to help new and established researchers investigate all aspects of DNA topology and the function of these enzymes. The chapters are written by prominent investigators in the field and provide detailed background information and st- by-step experimental protocols. The topics covered in Part I: DNA Topology and Enzymes, range from detailed methods to analyze various aspects of DNA structure, from linking number, knotting/unknotting, site-specific recombi- tion, and decatenation to the overexpression and purification of bacterial and eukaryotic DNA topoisomerases from a variety of cell systems and tissues.
DNA Topoisomerase Protocols
Author: Neil Osheroff
Publisher: Springer Science & Business Media
ISBN: 1592590578
Category : Medical
Languages : en
Pages : 331
Book Description
Beginning with the Escherichia coli ? protein, or bacterial DNA topoisomerase I, an ever-increasing number of enzymes have been identified that catalyze changes in the linkage of DNA strands. DNA topoisomerases are ubiquitous in nature and have been shown to play critical roles in most p- cesses involving DNA, including DNA replication, transcription, and rec- bination. These enzymes further constitute the cellular targets of a number of clinically important antibacterial and anticancer agents. Thus, further studies of DNA topology and DNA topoisomerases are critical to advance our und- standing of the basic biological processes required for cell cycle progression, cell division, genomic stability, and development. In addition, these studies will continue to provide critical insights into the cytotoxic action of drugs that target DNA topoisomerases. Such mechanistic studies have already played an important role in the development and clinical application of antimicrobial and chemotherapeutic agents. The two volumes of DNA Topoisomerase Protocols are designed to help new and established researchers investigate all aspects of DNA topology and the function of these enzymes. The chapters are written by prominent investigators in the field and provide detailed background information and st- by-step experimental protocols. The topics covered in Part I: DNA Topology and Enzymes, range from detailed methods to analyze various aspects of DNA structure, from linking number, knotting/unknotting, site-specific recombi- tion, and decatenation to the overexpression and purification of bacterial and eukaryotic DNA topoisomerases from a variety of cell systems and tissues.
Publisher: Springer Science & Business Media
ISBN: 1592590578
Category : Medical
Languages : en
Pages : 331
Book Description
Beginning with the Escherichia coli ? protein, or bacterial DNA topoisomerase I, an ever-increasing number of enzymes have been identified that catalyze changes in the linkage of DNA strands. DNA topoisomerases are ubiquitous in nature and have been shown to play critical roles in most p- cesses involving DNA, including DNA replication, transcription, and rec- bination. These enzymes further constitute the cellular targets of a number of clinically important antibacterial and anticancer agents. Thus, further studies of DNA topology and DNA topoisomerases are critical to advance our und- standing of the basic biological processes required for cell cycle progression, cell division, genomic stability, and development. In addition, these studies will continue to provide critical insights into the cytotoxic action of drugs that target DNA topoisomerases. Such mechanistic studies have already played an important role in the development and clinical application of antimicrobial and chemotherapeutic agents. The two volumes of DNA Topoisomerase Protocols are designed to help new and established researchers investigate all aspects of DNA topology and the function of these enzymes. The chapters are written by prominent investigators in the field and provide detailed background information and st- by-step experimental protocols. The topics covered in Part I: DNA Topology and Enzymes, range from detailed methods to analyze various aspects of DNA structure, from linking number, knotting/unknotting, site-specific recombi- tion, and decatenation to the overexpression and purification of bacterial and eukaryotic DNA topoisomerases from a variety of cell systems and tissues.
DNA Topoisomerase Protocols
Author: Mary-Ann Bjornsti
Publisher: Springer Science & Business Media
ISBN:
Category : Medical
Languages : en
Pages : 352
Book Description
DNA Topoisomerase Protocols, I: DNA Topology and Enzymes brings together an unprecedented collection of cutting-edge experimental protocols for investigating DNA structure, topology, and DNA topoisomerase function. Described by expert experimentalists who have perfected the techniques, these unfailingly reproducible methods utilize new approaches to study changes in DNA topology (linking number, knotting, catenation, and relaxation) and DNA structure (bending), as well as to assess chromosome structure through FLP-mediated recombination and to analyze bacterial nucleoid structure. State-of-the-art protocols also detail the expression and purification of bacterial, viral, and eukaryotic DNA topoisomerases from a variety of sources, including baculovirus, and bacterial, yeast and mammalian expression systems. A companion volume, DNA Topoisomerase Protocols, v. 2: Enzymology and Drugs, provides detailed protocols to study the catalytic activities of DNA topoisomerases, as well as their specific interactions with topoisomerase-targeted antitumor and antibacterial drugs. DNA Topoisomerase Protocols, I: DNA Topology and Enzymes will be of immense value to the many basic scientists and clinicians who want better to understand and to exploit proficiently the wealth of recent discoveries about chromatin structure and its relation to gene expression, about DNA topoisomerases as the targets of antitumor and antibacterial agents, and about DNA repair.
Publisher: Springer Science & Business Media
ISBN:
Category : Medical
Languages : en
Pages : 352
Book Description
DNA Topoisomerase Protocols, I: DNA Topology and Enzymes brings together an unprecedented collection of cutting-edge experimental protocols for investigating DNA structure, topology, and DNA topoisomerase function. Described by expert experimentalists who have perfected the techniques, these unfailingly reproducible methods utilize new approaches to study changes in DNA topology (linking number, knotting, catenation, and relaxation) and DNA structure (bending), as well as to assess chromosome structure through FLP-mediated recombination and to analyze bacterial nucleoid structure. State-of-the-art protocols also detail the expression and purification of bacterial, viral, and eukaryotic DNA topoisomerases from a variety of sources, including baculovirus, and bacterial, yeast and mammalian expression systems. A companion volume, DNA Topoisomerase Protocols, v. 2: Enzymology and Drugs, provides detailed protocols to study the catalytic activities of DNA topoisomerases, as well as their specific interactions with topoisomerase-targeted antitumor and antibacterial drugs. DNA Topoisomerase Protocols, I: DNA Topology and Enzymes will be of immense value to the many basic scientists and clinicians who want better to understand and to exploit proficiently the wealth of recent discoveries about chromatin structure and its relation to gene expression, about DNA topoisomerases as the targets of antitumor and antibacterial agents, and about DNA repair.
Untangling the Double Helix
Author: James C. Wang
Publisher:
ISBN:
Category : DNA topoisomerases
Languages : en
Pages : 252
Book Description
The problem of unraveling two intertwined strands during the duplication of DNA was recognized shortly after the proposal of the DNA double helix structure in 1953. A group of enzymes called DNA topoisomerases solve this problem by breaking and rejoining DNA molecules in a controlled manner, thereby allowing strands to be passed through each other and thus untangled—not just during DNA replication, but also during many other basic cellular processes. Because of their intimate involvement in the workings of the cell, topoisomerases are also the logical targets of many antibiotics (including Cipro) and anticancer agents. This book, written by James Wang, the discoverer of the first topoisomerase and a leader in the field since, presents ten chapters covering the historical backdrop of the DNA entanglement problem and the discovery of the DNA topoisomerases, how DNA topoisomerases perform their magic in DNA replication, transcription, genetic recombination and chromosome condensation, and how they are targets of therapeutic agents. The book should appeal to readers from undergraduates upwards with interests in the biological and clinical aspects of topoisomerase function, or in the mathematics and physics of topology.
Publisher:
ISBN:
Category : DNA topoisomerases
Languages : en
Pages : 252
Book Description
The problem of unraveling two intertwined strands during the duplication of DNA was recognized shortly after the proposal of the DNA double helix structure in 1953. A group of enzymes called DNA topoisomerases solve this problem by breaking and rejoining DNA molecules in a controlled manner, thereby allowing strands to be passed through each other and thus untangled—not just during DNA replication, but also during many other basic cellular processes. Because of their intimate involvement in the workings of the cell, topoisomerases are also the logical targets of many antibiotics (including Cipro) and anticancer agents. This book, written by James Wang, the discoverer of the first topoisomerase and a leader in the field since, presents ten chapters covering the historical backdrop of the DNA entanglement problem and the discovery of the DNA topoisomerases, how DNA topoisomerases perform their magic in DNA replication, transcription, genetic recombination and chromosome condensation, and how they are targets of therapeutic agents. The book should appeal to readers from undergraduates upwards with interests in the biological and clinical aspects of topoisomerase function, or in the mathematics and physics of topology.
DNA Topoisomearases: Biochemistry and Molecular Biology
Author:
Publisher: Academic Press
ISBN: 008058120X
Category : Science
Languages : en
Pages : 337
Book Description
Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular basis of drug action, both applied and experimental.
Publisher: Academic Press
ISBN: 008058120X
Category : Science
Languages : en
Pages : 337
Book Description
Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular basis of drug action, both applied and experimental.
DNA Topology
Author: Andrew D. Bates
Publisher: Oxford University Press, USA
ISBN: 9780198567097
Category : Science
Languages : en
Pages : 224
Book Description
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
Publisher: Oxford University Press, USA
ISBN: 9780198567097
Category : Science
Languages : en
Pages : 224
Book Description
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
Cancer Chemotherapy and Biotherapy
Author: Bruce A. Chabner
Publisher: Lippincott Williams & Wilkins
ISBN: 1451148208
Category : Medical
Languages : en
Pages : 836
Book Description
Updated to include the newest drugs and those currently in development, this Fifth Edition is a comprehensive reference on the preclinical and clinical pharmacology of anticancer agents. Organized by drug class, the book provides the latest information on all drugs and biological agents—their mechanisms of action, interactions with other agents, toxicities, side effects, and mechanisms of resistance. The authors explain the rationale for use of drugs in specific schedules and combinations and offer guidelines for dose adjustment in particular situations. This edition's introduction includes timely information on general strategies for drug usage, the science of drug discovery and development, economic and regulatory aspects of cancer drug development, and principles of pharmacokinetics. Eight new chapters have been added and more than twenty have been significantly revised. A companion website includes the fully searchable text and an image bank.
Publisher: Lippincott Williams & Wilkins
ISBN: 1451148208
Category : Medical
Languages : en
Pages : 836
Book Description
Updated to include the newest drugs and those currently in development, this Fifth Edition is a comprehensive reference on the preclinical and clinical pharmacology of anticancer agents. Organized by drug class, the book provides the latest information on all drugs and biological agents—their mechanisms of action, interactions with other agents, toxicities, side effects, and mechanisms of resistance. The authors explain the rationale for use of drugs in specific schedules and combinations and offer guidelines for dose adjustment in particular situations. This edition's introduction includes timely information on general strategies for drug usage, the science of drug discovery and development, economic and regulatory aspects of cancer drug development, and principles of pharmacokinetics. Eight new chapters have been added and more than twenty have been significantly revised. A companion website includes the fully searchable text and an image bank.
Drosophila Protocols
Author: William Sullivan
Publisher: CSHL Press
ISBN: 9780879695866
Category : Medical
Languages : en
Pages : 798
Book Description
This exceptional laboratory manual describes thirty-seven procedures most likely to be used in the next decade for molecular, biochemical, and cellular studies on Drosophila. They were selected after extensive consultation with the research community and rigorously edited for clarity, uniformity, and conciseness.The methods included permit investigation of chromosomes, cell biology, molecular biology, genomes, biochemistry, and development. Each protocol includes the basic information needed by novices, with sufficient detail to be valuable to experienced investigators. Each method is carefully introduced and illustrated with figures, tables, illustrations, and examples of the data obtainable. The book's appendices include key aspects of Drosophila biology, essential solutions, buffers, and recipes.An evolution of Michael Ashburner's 1989 classic Drosophila: A Laboratory Manual, this book is an essential addition to the personal library of Drosophila investigators and an incomparable resource for other research groups with goals likely to require fly-based technical approaches.
Publisher: CSHL Press
ISBN: 9780879695866
Category : Medical
Languages : en
Pages : 798
Book Description
This exceptional laboratory manual describes thirty-seven procedures most likely to be used in the next decade for molecular, biochemical, and cellular studies on Drosophila. They were selected after extensive consultation with the research community and rigorously edited for clarity, uniformity, and conciseness.The methods included permit investigation of chromosomes, cell biology, molecular biology, genomes, biochemistry, and development. Each protocol includes the basic information needed by novices, with sufficient detail to be valuable to experienced investigators. Each method is carefully introduced and illustrated with figures, tables, illustrations, and examples of the data obtainable. The book's appendices include key aspects of Drosophila biology, essential solutions, buffers, and recipes.An evolution of Michael Ashburner's 1989 classic Drosophila: A Laboratory Manual, this book is an essential addition to the personal library of Drosophila investigators and an incomparable resource for other research groups with goals likely to require fly-based technical approaches.
Current Protocols Essential Laboratory Techniques
Author: Sean R. Gallagher
Publisher: John Wiley & Sons
ISBN: 047094241X
Category : Science
Languages : en
Pages : 679
Book Description
The latest title from the acclaimed Current Protocols series, Current Protocols Essential Laboratory Techniques, 2e provides the new researcher with the skills and understanding of the fundamental laboratory procedures necessary to run successful experiments, solve problems, and become a productive member of the modern life science laboratory. From covering the basic skills such as measurement, preparation of reagents and use of basic instrumentation to the more advanced techniques such as blotting, chromatography and real-time PCR, this book will serve as a practical reference manual for any life science researcher. Written by a combination of distinguished investigators and outstanding faculty, Current Protocols Essential Laboratory Techniques, 2e is the cornerstone on which the beginning scientist can develop the skills for a successful research career.
Publisher: John Wiley & Sons
ISBN: 047094241X
Category : Science
Languages : en
Pages : 679
Book Description
The latest title from the acclaimed Current Protocols series, Current Protocols Essential Laboratory Techniques, 2e provides the new researcher with the skills and understanding of the fundamental laboratory procedures necessary to run successful experiments, solve problems, and become a productive member of the modern life science laboratory. From covering the basic skills such as measurement, preparation of reagents and use of basic instrumentation to the more advanced techniques such as blotting, chromatography and real-time PCR, this book will serve as a practical reference manual for any life science researcher. Written by a combination of distinguished investigators and outstanding faculty, Current Protocols Essential Laboratory Techniques, 2e is the cornerstone on which the beginning scientist can develop the skills for a successful research career.
Cell Cycle Checkpoint Control Protocols
Author: Howard B. Lieberman
Publisher: Springer Science & Business Media
ISBN: 1592596460
Category : Science
Languages : en
Pages : 366
Book Description
The field of cell cycle regulation is based on the observation that the life cycle of a cell progresses through several distinct phases, G1, M, S, and G2, occurring in a well-defined temporal order. Details of the mechanisms involved are rapidly emerging and appear extraordinarily complex. Furthermore, not only is the order of the phases important, but in normal eukaryotic cells one phase will not begin unless the prior phase is completed successfully. Che- point control mechanisms are essentially surveillance systems that monitor the events in each phase, and assure that the cell does not progress prematurely to the next phase. If conditions are such that the cell is not ready to progress—for example, because of incomplete DNA replication in S or DNA damage that may interfere with chromosome segregation in M—a transient delay in cell cycle progression will occur. Once the inducing event is properly handled— for example, DNA replication is no longer blocked or damaged DNA is repaired—cell cycle progression continues. Checkpoint controls have recently been the focus of intense study by investigators interested in mechanisms that regulate the cell cycle. Furthermore, the relationship between checkpoint c- trol and carcinogenesis has additionally enhanced interest in these cell cycle regulatory pathways. It is clear that cancer cells often lack these checkpoints and exhibit genomic instability as a result. Moreover, several tumor suppressor genes participate in checkpoint control, and alterations in these genes are as- ciated with genomic instability as well as the development of cancer.
Publisher: Springer Science & Business Media
ISBN: 1592596460
Category : Science
Languages : en
Pages : 366
Book Description
The field of cell cycle regulation is based on the observation that the life cycle of a cell progresses through several distinct phases, G1, M, S, and G2, occurring in a well-defined temporal order. Details of the mechanisms involved are rapidly emerging and appear extraordinarily complex. Furthermore, not only is the order of the phases important, but in normal eukaryotic cells one phase will not begin unless the prior phase is completed successfully. Che- point control mechanisms are essentially surveillance systems that monitor the events in each phase, and assure that the cell does not progress prematurely to the next phase. If conditions are such that the cell is not ready to progress—for example, because of incomplete DNA replication in S or DNA damage that may interfere with chromosome segregation in M—a transient delay in cell cycle progression will occur. Once the inducing event is properly handled— for example, DNA replication is no longer blocked or damaged DNA is repaired—cell cycle progression continues. Checkpoint controls have recently been the focus of intense study by investigators interested in mechanisms that regulate the cell cycle. Furthermore, the relationship between checkpoint c- trol and carcinogenesis has additionally enhanced interest in these cell cycle regulatory pathways. It is clear that cancer cells often lack these checkpoints and exhibit genomic instability as a result. Moreover, several tumor suppressor genes participate in checkpoint control, and alterations in these genes are as- ciated with genomic instability as well as the development of cancer.
Receptor Binding Techniques
Author: Mary Keen
Publisher: Springer Science & Business Media
ISBN: 0896035301
Category : Binding Sites
Languages : en
Pages : 288
Book Description
This cutting-edge collection of step-by-step experimental protocols demonstrates
Publisher: Springer Science & Business Media
ISBN: 0896035301
Category : Binding Sites
Languages : en
Pages : 288
Book Description
This cutting-edge collection of step-by-step experimental protocols demonstrates