DMFT at 25: Infinite Dimensions

DMFT at 25: Infinite Dimensions PDF Author: Eva Pavarini
Publisher: Forschungszentrum Jülich
ISBN: 3893369538
Category :
Languages : en
Pages : 459

Get Book

Book Description


Out-of-Equilibrium Physics of Correlated Electron Systems

Out-of-Equilibrium Physics of Correlated Electron Systems PDF Author: Roberta Citro
Publisher: Springer
ISBN: 331994956X
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book

Book Description
This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.

Dynamical Mean-Field Theory for Strongly Correlated Materials

Dynamical Mean-Field Theory for Strongly Correlated Materials PDF Author: Volodymyr Turkowski
Publisher: Springer Nature
ISBN: 3030649040
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book

Book Description
​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.

Interacting Electrons

Interacting Electrons PDF Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 0521871506
Category : Computers
Languages : en
Pages : 843

Get Book

Book Description
This book sets out modern methods of computing properties of materials, including essential theoretical background, computational approaches, practical guidelines and instructive applications.

Nonequilibrium Physics at Short Time Scales

Nonequilibrium Physics at Short Time Scales PDF Author: Klaus Morawetz
Publisher: Springer Science & Business Media
ISBN: 3662089904
Category : Science
Languages : en
Pages : 499

Get Book

Book Description
This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1 PDF Author: Nicolas Dupuis
Publisher: World Scientific
ISBN: 180061392X
Category : Science
Languages : en
Pages : 689

Get Book

Book Description
This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from electron gas and Fermi-liquid theory to superfluidity and superconductivity, magnetic instabilities in electron systems, and dynamical mean-field theory of Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and then make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics, and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or many-body problem is required.

Materials in Transition

Materials in Transition PDF Author: Ludwik Dobrzynski
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book

Book Description
The main topics covered by this fascinating book, Materials in Transition, are the manifold aspects of transient phenomena in condensed matter, the kinetics of phase transitions, catalysis, solid-state reactions, self-organization, etc.

Electronic Structure of Strongly Correlated Materials

Electronic Structure of Strongly Correlated Materials PDF Author: Vladimir Anisimov
Publisher: Springer Science & Business Media
ISBN: 3642048269
Category : Technology & Engineering
Languages : en
Pages : 298

Get Book

Book Description
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications PDF Author: Olena Fesenko
Publisher: Springer Nature
ISBN: 3030522687
Category : Science
Languages : en
Pages : 414

Get Book

Book Description
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 7th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2019), which was held on August 27–30, 2019 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book’s companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.

Properties and Applications of Thermoelectric Materials

Properties and Applications of Thermoelectric Materials PDF Author: Veljko Zlatic
Publisher: Springer Science & Business Media
ISBN: 9048128927
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book

Book Description
As concerns with the efficient use of energy resources, and the minimization of environmental damage have come to the fore, there has been a renewed interest in the role that thermoelectric devices could play in generating electricity from waste heat, enabling cooling via refrigerators with no moving parts, and many other more specialized applications. The main problem in realizing this ambition is the rather low efficiency of such devices for general applications. This book deals with the proceedings of a workshop addressed that problems by reviewing the latest experimental and theoretical work on suitable materials for device applications and by exploring various strategies that might increase their efficiency. The proceedings cover a broad range of approaches, from the experimental work of fabricating new compounds through to theoretical work in characterizing and understanding their properties. The effects of strong electron correlation, disorder, the proximity to metal-insulator transitions, the properties of layered composite materials, and the introduction of voids or cages into the structure to reduce the lattice thermal conductivity are all explored as ways of enhancing the efficiency of their use in thermoelectric devices.