Distributions in the Physical and Engineering Sciences, Volume 2

Distributions in the Physical and Engineering Sciences, Volume 2 PDF Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427

Get Book Here

Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.

Distributions in the Physical and Engineering Sciences, Volume 2

Distributions in the Physical and Engineering Sciences, Volume 2 PDF Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427

Get Book Here

Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.

Distributions in the Physical and Engineering Sciences

Distributions in the Physical and Engineering Sciences PDF Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 1461241588
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.

Distributions in the Physical and Engineering Sciences, Volume 1

Distributions in the Physical and Engineering Sciences, Volume 1 PDF Author: Alexander I. Saichev
Publisher: Springer
ISBN: 3319979582
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non-specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbook available to a wider audience.

Statistical Distributions in Engineering

Statistical Distributions in Engineering PDF Author: Karl V. Bury
Publisher: Cambridge University Press
ISBN: 9780521635066
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This 1999 book presents single-variable statistical distributions useful in solving practical problems in a wide range of engineering contexts.

Distribution Theory

Distribution Theory PDF Author: Petre Teodorescu
Publisher: John Wiley & Sons
ISBN: 3527653635
Category : Science
Languages : en
Pages : 379

Get Book Here

Book Description
In this comprehensive monograph, the authors apply modern mathematical methods to the study of mechanical and physical phenomena or techniques in acoustics, optics, and electrostatics, where classical mathematical tools fail. They present a general method of approaching problems, pointing out different aspects and difficulties that may occur. With respect to the theory of distributions, only the results and the principle theorems are given as well as some mathematical results. The book also systematically deals with a large number of applications to problems of general Newtonian mechanics, as well as to problems pertaining to the mechanics of deformable solids and physics. Special attention is placed upon the introduction of corresponding mathematical models. Addressed to a wide circle of readers who use mathematical methods in their work: applied mathematicians, engineers in various branches, as well as physicists, while also benefiting students in various fields.

A First Course in Statistics for Signal Analysis

A First Course in Statistics for Signal Analysis PDF Author: Wojbor A. Woyczynski
Publisher: Springer Science & Business Media
ISBN: 0817681019
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
This self-contained and user-friendly textbook is designed for a first, one-semester course in statistical signal analysis for a broad audience of students in engineering and the physical sciences. The emphasis throughout is on fundamental concepts and relationships in the statistical theory of stationary random signals, which are explained in a concise, yet rigorous presentation. With abundant practice exercises and thorough explanations, A First Course in Statistics for Signal Analysis is an excellent tool for both teaching students and training laboratory scientists and engineers. Improvements in the second edition include considerably expanded sections, enhanced precision, and more illustrative figures.

Mathematical Modeling and Supercomputer Technologies

Mathematical Modeling and Supercomputer Technologies PDF Author: Dmitry Balandin
Publisher: Springer Nature
ISBN: 3031241452
Category : Computers
Languages : en
Pages : 319

Get Book Here

Book Description
This book constitutes selected and revised papers from the 22nd International Conference on Mathematical Modeling and Supercomputer Technologies, MMST 2022, held in Nizhny Novgorod, Russia, in November 2022. The 20 full papers and 5 short papers presented in the volume were thoroughly reviewed and selected from the 48 submissions. They are organized in topical secions on ​computational methods for mathematical models analysis; computation in optimization and optimal control; supercomputer simulation.

Distributions in the Physical and Engineering Sciences, Volume 3

Distributions in the Physical and Engineering Sciences, Volume 3 PDF Author: Alexander I. Saichev
Publisher: Birkhäuser
ISBN: 3319925865
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
Continuing the authors’ multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.

Materials Science and Engineering, Volume II

Materials Science and Engineering, Volume II PDF Author: Gennady E. Zaikov
Publisher: CRC Press
ISBN: 1482240939
Category : Science
Languages : en
Pages : 382

Get Book Here

Book Description
This book has an important role in advancing non-classical materials on the macro and nanoscale. The book provides original, theoretical, and important experimental results. Some research uses non-routine methodologies often unfamiliar to some readers. Furthermore, papers on novel applications of more familiar experimental techniques and analyses o

Lévy Processes

Lévy Processes PDF Author: Ole E Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.