Distributed Coordination Theory for Robot Teams

Distributed Coordination Theory for Robot Teams PDF Author: Ashton Roza
Publisher: Springer Nature
ISBN: 3030960870
Category : Technology & Engineering
Languages : en
Pages : 153

Get Book Here

Book Description
Distributed Coordination Theory for Robot Teams develops control algorithms to coordinate the motion of autonomous teams of robots in order to achieve some desired collective goal. It provides novel solutions to foundational coordination problems, including distributed algorithms to make quadrotor helicopters rendezvous and to make ground vehicles move in formation along circles or straight lines. The majority of the algorithms presented in this book can be implemented using on-board cameras. The book begins with an introduction to coordination problems, such as rendezvous of flying robots, and modelling. It then provides a solid theoretical background in basic stability, graph theory and control primitives. The book discusses the algorithmic solutions for numerous distributed control problems, focusing primarily on flying robotics and kinematic unicycles. Finally, the book looks to the future, and suggests areas discussed which could be pursued in further research. This book will provide practitioners, researchers and students in the field of control and robotics new insights in distributed multi-agent systems.

Distributed Coordination Theory for Robot Teams

Distributed Coordination Theory for Robot Teams PDF Author: Ashton Roza
Publisher: Springer Nature
ISBN: 3030960870
Category : Technology & Engineering
Languages : en
Pages : 153

Get Book Here

Book Description
Distributed Coordination Theory for Robot Teams develops control algorithms to coordinate the motion of autonomous teams of robots in order to achieve some desired collective goal. It provides novel solutions to foundational coordination problems, including distributed algorithms to make quadrotor helicopters rendezvous and to make ground vehicles move in formation along circles or straight lines. The majority of the algorithms presented in this book can be implemented using on-board cameras. The book begins with an introduction to coordination problems, such as rendezvous of flying robots, and modelling. It then provides a solid theoretical background in basic stability, graph theory and control primitives. The book discusses the algorithmic solutions for numerous distributed control problems, focusing primarily on flying robotics and kinematic unicycles. Finally, the book looks to the future, and suggests areas discussed which could be pursued in further research. This book will provide practitioners, researchers and students in the field of control and robotics new insights in distributed multi-agent systems.

Distributed Coordination Theory for Ground and Aerial Robot Teams

Distributed Coordination Theory for Ground and Aerial Robot Teams PDF Author: Ashton Roza
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis investigates distributed coordination problems for two important classes of robots. One class corresponds to ground-based mobile robots, each modelled as a kinematic unicycle. The second corresponds to flying robots, each propelled by a thrust vector and endowed with an actuation mechanism producing torques about three orthogonal body axes. The following coordination problems are studied in this thesis: rendezvous, formation control, linear and circular formation flocking and formation path following. For rendezvous of kinematic unicycles, a smooth, time-independent control law is presented that drives the unicycles to a common position from arbitrary initial conditions, under the assumption that the sensing digraph is time-invariant and contains a globally reachable node. The proposed feedback is very simple and is local and distributed. For rendezvous of flying robots, a control strategy is presented that makes the centres of mass of the vehicles converge to an arbitrarily small neighborhood of one another. The convergence is global, and each vehicle can compute its own control input using local and distributed feedback. For formation control, the objective is to make an ensemble of kinematic unicycles achieve pre-defined inter-agent spacings with parallel heading angles. We consider scenarios where the formation either stops or moves with a final collective motion. In the latter case, problems of linear and circular formation flocking and formation path following are studied. A control law is presented in each case that solves the problem for almost all initial conditions. For stopping and flocking formations, the proposed control laws are local and distributed while for formation path following, the control laws additionally require each agent to measure its displacement from the path. The idea used to solve the formation control problems is to rigidly attach an offset vector to the body frame of each unicycle. It is shown that stabilizing the desired formation amounts to achieving consensus of the endpoints of the offset vectors, and simultaneously synchronizing the unicycles' heading angles. Extension of formation control to flying robots using strictly local and distributed feedback is not addressed in this work and remains a challenging open problem.

Distributed Autonomous Robotic Systems

Distributed Autonomous Robotic Systems PDF Author: M. Ani Hsieh
Publisher: Springer
ISBN: 3642551467
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Coordination for Perception, Coverage, and Tracking; Task Allocation and Coordination Strategies; Modular Robots and Novel Mechanisms and Sensors; Formation Control and Planning for Robot Teams; and Learning, Adaptation, and Cognition for Robot Teams.

Distributed Control of Robotic Networks

Distributed Control of Robotic Networks PDF Author: Francesco Bullo
Publisher: Princeton University Press
ISBN: 1400831474
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

Robot Teams

Robot Teams PDF Author: Tucker Balch
Publisher: CRC Press
ISBN: 1439863679
Category : Computers
Languages : en
Pages : 425

Get Book Here

Book Description
This is a comprehensive volume on robot teams that will be the standard reference on multi-robot systems. The volume provides not only the essentials of multi-agent robotics theory but also descriptions of exemplary implemented systems demonstrating the key concepts of multi-robot research. Information is presented in a descriptive manner and augme

Coordination Dynamics in Human-Robot Teams

Coordination Dynamics in Human-Robot Teams PDF Author: Tariq Iqbal
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description
As robots become more common in our daily lives, they will be expected to interact with and work with teams of people. If a robot has an understanding of the underlying dynamics of a team, then it can recognize, anticipate, and adapt to human motion to be a more effective teammate. To enable robots to understand team dynamics, I developed a new, non-linear method to detect group synchronization, which takes multiple types of discrete, task-level events into consideration. I explored this method within the context of coordinated action and validated it by applying it to both human-only and mixed human-robot teams. The results suggest that our method is more accurate in estimating group synchronization than other methods from the literature. Building on this work, I designed a new method for robots to perceive human group behavior in real-time, anticipate future actions, and synthesize their motion accordingly. I validated this approach within a human-robot interaction scenario, where a robot successfully and contingently coordinated with people in real-time. We found that robots perform better when they have an understanding of team dynamics than they do not. Moreover, I investigated how the presence and behavior of robots affect group coordination in multi-human, multi-robot teams. The results suggested that group coordination was significantly degraded when a robot joined a human-only group, and was further degraded when a second robot joined the team and employed a different anticipation algorithm from the other robot. These findings suggest that heterogeneous behavior of robots in a multi-human group can play a major role in how group coordination dynamics change. Furthermore, I designed and implemented algorithms for robots to coordinate with people in tempo-changing environments. These algorithms leveraged a human-like understanding of temporal anticipation and adaptation during the coordination process. I validated the algorithms by applying them in a human-robot drumming scenario. The results suggest that an adaptation process alone enables a robot to achieve human-level performance. Moreover, by combining anticipatory knowledge (anticipation algorithm), along with an adaptation process, a robot can be even better than people in both uniform and single tempo-changing conditions. My research will enable robots to recognize, anticipate, and adapt to human groups. This work will help enable others in the robotics community to build more fluent and adaptable robots in the future, and provide a necessary understanding for how we design future human-robot teams.

Software, Programming, and Run-Time Coordination for Distributed Robotics

Software, Programming, and Run-Time Coordination for Distributed Robotics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Our project created and disseminated new technologies for coordinating the behavior of large numbers of form factor constrained mobile robots. Simulations and robotic experiments were created to demonstrate coordination constraints expressed in a controlled theoretic framework in a manner that guarantees performance (time, energy, and comm bandwidth), scales to hundreds of individuals, and supports optimization via reinforcement learning to acquire distributed control policies. We have implemented 10 "uBots" to realize our SDR concept on which we have demonstrated adaptive impedance control, multi-robot coordination and dynamic role assignment, a real-time process scheduler, and wearable interfaces. Applications, including: search and mapping; leader-follower control; and multi-robot behavior for preserving network connectivity among coordinated peers. Performance bounds on an n-robot teams using network-distributed interfaces have been demonstrated as well. Twelve students are involved in our SDR project. We ported control code for autonomous grasping and manipulation gaits for robot hands to our colleagues at NASA-JSC for use in the Robonaut program and our simulation for multi-robot search controllers that maintain line of sight was transferred to colleagues at SPAWAR.

Distributed Coordination for Teams of Robots

Distributed Coordination for Teams of Robots PDF Author: Joseph William Durham
Publisher:
ISBN: 9781124885247
Category :
Languages : en
Pages : 144

Get Book Here

Book Description
Our second application is a visibility-based pursuit-evasion problem in which a team of mobile robots with limited sensing and communication capabilities must coordinate to detect any evaders in an unknown, multiply-connected planar environment. Our distributed algorithm to guarantee evader detection is built around maintaining complete coverage of the frontier between cleared and contaminated regions while expanding the cleared region. We detail a novel distributed method for storing and updating this frontier without building a global map or requiring global localization.

Coordination of Impromptu Heterogeneous Robot Teams

Coordination of Impromptu Heterogeneous Robot Teams PDF Author: Scott Michael Miller
Publisher:
ISBN:
Category : Client/server computing
Languages : en
Pages : 146

Get Book Here

Book Description


Combining Coordination Mechanisms to Improve Performance in Multi-robot Teams

Combining Coordination Mechanisms to Improve Performance in Multi-robot Teams PDF Author: Ehsan Nasroullahi
Publisher:
ISBN:
Category : Machine learning
Languages : en
Pages : 64

Get Book Here

Book Description
Coordination is essential to achieving good performance in cooperative multiagent systems. To date, most work has focused on either implicit or explicit coordination mechanisms, while relatively little work has focused on the benefits of combining these two approaches. In this work we demonstrate that combining explicit and implicit mechanisms can significantly improve coordination and system performance over either approach individually. First, we use difference evaluations (which aim to compute an agent's contribution to the team) and stigmergy to promote implicit coordination. Second, we introduce an explicit coordination mechanism dubbed Intended Destination Enhanced Artificial State (IDEAS), where an agent incorporates other agents' intended destinations directly into its state. The IDEAS approach does not require any formal negotiation between agents, and is based on passive information sharing. Finally, we combine these two approaches on a variant of a team-based multi-robot exploration domain, and show that agents using a both explicit and implicit coordination outperform other learning agents up to 25%.