Discretization of Processes

Discretization of Processes PDF Author: Jean Jacod
Publisher: Springer Science & Business Media
ISBN: 3642241271
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
In applications, and especially in mathematical finance, random time-dependent events are often modeled as stochastic processes. Assumptions are made about the structure of such processes, and serious researchers will want to justify those assumptions through the use of data. As statisticians are wont to say, “In God we trust; all others must bring data.” This book establishes the theory of how to go about estimating not just scalar parameters about a proposed model, but also the underlying structure of the model itself. Classic statistical tools are used: the law of large numbers, and the central limit theorem. Researchers have recently developed creative and original methods to use these tools in sophisticated (but highly technical) ways to reveal new details about the underlying structure. For the first time in book form, the authors present these latest techniques, based on research from the last 10 years. They include new findings. This book will be of special interest to researchers, combining the theory of mathematical finance with its investigation using market data, and it will also prove to be useful in a broad range of applications, such as to mathematical biology, chemical engineering, and physics.

Numerical Models of Oceans and Oceanic Processes

Numerical Models of Oceans and Oceanic Processes PDF Author: Lakshmi H. Kantha
Publisher: Elsevier
ISBN: 0080512909
Category : Science
Languages : en
Pages : 981

Get Book Here

Book Description
Oceans play a pivotal role in our weather and climate. Ocean-borne commerce is vital to our increasingly close-knit global community. Yet we do not fully understand the intricate details of how they function, how they interact with the atmosphere, and what the limits are to their biological productivity and their tolerance to wastes. While satellites are helping us to fill in the gaps, numerical ocean models are playing an important role in increasing our ability to comprehend oceanic processes, monitor the current state of the oceans, and to a limited extent, even predict their future state.Numerical Models of Oceans and Oceanic Processes is a survey of the current state of knowledge in this field. It brings together a discussion of salient oceanic dynamics and processes, numerical solution methods, and ocean models to provide a comprehensive treatment of the topic. Starting with elementary concepts in ocean dynamics, it deals with equatorial, mid-latitude, high latitude, and coastal dynamics from the perspective of a modeler. A comprehensive and up-to-date chapter on tides is also included. This is followed by a discussion of different kinds of numerical ocean models and the pre- and post-processing requirements and techniques. Air-sea and ice-ocean coupled models are described, as well as data assimilation and nowcast/forecasts. Comprehensive appendices on wavelet transforms and empirical orthogonal functions are also included.This comprehensive and up-to-date survey of the field should be of interest to oceanographers, atmospheric scientists, and climatologists. While some prior knowledge of oceans and numerical modeling is helpful, the book includes an overview of enough elementary material so that along with its companion volume, Small Scale Processes in Geophysical Flows, it should be useful to both students new to the field and practicing professionals.* Comprehensive and up-to-date review* Useful for a two-semester (or one-semester on selected topics) graduate level course* Valuable reference on the topic* Essential for a better understanding of weather and climate

Path Integrals For Stochastic Processes: An Introduction

Path Integrals For Stochastic Processes: An Introduction PDF Author: Horacio Sergio Wio
Publisher: World Scientific
ISBN: 9814449059
Category : Science
Languages : en
Pages : 174

Get Book Here

Book Description
This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950's. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy).The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations. remove /a

Complex Flows in Industrial Processes

Complex Flows in Industrial Processes PDF Author: Antonio Fasano
Publisher: Springer Science & Business Media
ISBN: 1461213487
Category : Technology & Engineering
Languages : en
Pages : 342

Get Book Here

Book Description
Despite the fact that fluid dynamics and filtration through porous media and mathematics, there are classical research areas in engineering, physics, are still many industrial processes that require the study of new mathemat ical models for flows of particular complexity, due to the peculiar properties of the systems involved. The aim of this book is to provide a number of examples showing how frequently such situations arise in various branches of industrial technology. The selection of the subjects was motivated not only by their industrial rel evance and mathematical interest. What I had in mind was a collection of problems having a really distinctive character, thus bringing some fresh air into one of the oldest and most revered domains of applied mathematics. The incredible richness of nonstandard flow problems in industrial appli cations has always been, and still is, a constant surprise to me. Therefore I tried to offer a very large spectrum of subjects, with special attention devoted to those problems in which the modeling phase is far from being obvious, and the mathematical content is absolutely nontrivial. With such a view to diversity, topics have been selected from a variety of sources (such as glass industry, polymers science, coffee brewing, fuels pipelining), and contributors from different backgrounds (mathematics, physics, chemical engineering) have been included. Consequently, the mathematical nature of the problems formulated spans over a large range, so that their theoret ical investigation and numerical computation require a variety of different techniques.

Mathematical Modelling

Mathematical Modelling PDF Author: Seyed M. Moghadas
Publisher: John Wiley & Sons
ISBN: 1119483956
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
An important resource that provides an overview of mathematical modelling Mathematical Modelling offers a comprehensive guide to both analytical and computational aspects of mathematical modelling that encompasses a wide range of subjects. The authors provide an overview of the basic concepts of mathematical modelling and review the relevant topics from differential equations and linear algebra. The text explores the various types of mathematical models, and includes a range of examples that help to describe a variety of techniques from dynamical systems theory. The book’s analytical techniques examine compartmental modelling, stability, bifurcation, discretization, and fixed-point analysis. The theoretical analyses involve systems of ordinary differential equations for deterministic models. The text also contains information on concepts of probability and random variables as the requirements of stochastic processes. In addition, the authors describe algorithms for computer simulation of both deterministic and stochastic models, and review a number of well-known models that illustrate their application in different fields of study. This important resource: Includes a broad spectrum of models that fall under deterministic and stochastic classes and discusses them in both continuous and discrete forms Demonstrates the wide spectrum of problems that can be addressed through mathematical modelling based on fundamental tools and techniques in applied mathematics and statistics Contains an appendix that reveals the overall approach that can be taken to solve exercises in different chapters Offers many exercises to help better understand the modelling process Written for graduate students in applied mathematics, instructors, and professionals using mathematical modelling for research and training purposes, Mathematical Modelling: A Graduate Textbook covers a broad range of analytical and computational aspects of mathematical modelling.

Discretization and MCMC Convergence Assessment

Discretization and MCMC Convergence Assessment PDF Author: Christian P. Robert
Publisher: Springer Science & Business Media
ISBN: 1461217164
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring.

An Introduction to Probability and Stochastic Processes

An Introduction to Probability and Stochastic Processes PDF Author: James L. Melsa
Publisher: Courier Corporation
ISBN: 0486490998
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

Adaptive Markov Control Processes

Adaptive Markov Control Processes PDF Author: Onesimo Hernandez-Lerma
Publisher: Springer Science & Business Media
ISBN: 1441987142
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.

Formal Modeling and Analysis of Timed Systems

Formal Modeling and Analysis of Timed Systems PDF Author: Uli Fahrenberg
Publisher: Springer Science & Business Media
ISBN: 3642243096
Category : Computers
Languages : en
Pages : 363

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2011, held in Aalborg, Denmark, in September 2011. The 20 revised full papers presented together with three invited talks were carefully reviewed and selected from 43 submissions. The papers are organized in topical sections on probabilistic methods, robustness, games, verification and testing, verification, hybrid systems, and applications.

Computational Plasticity in Powder Forming Processes

Computational Plasticity in Powder Forming Processes PDF Author: Amir Khoei
Publisher: Elsevier
ISBN: 0080529704
Category : Technology & Engineering
Languages : en
Pages : 483

Get Book Here

Book Description
The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.