Author: Gregori A. Margulis
Publisher: Springer Science & Business Media
ISBN: 9783540121794
Category : Mathematics
Languages : en
Pages : 408
Book Description
Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.
Discrete Subgroups of Semisimple Lie Groups
Author: Gregori A. Margulis
Publisher: Springer Science & Business Media
ISBN: 9783540121794
Category : Mathematics
Languages : en
Pages : 408
Book Description
Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.
Publisher: Springer Science & Business Media
ISBN: 9783540121794
Category : Mathematics
Languages : en
Pages : 408
Book Description
Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.
Discrete Subgroups of Lie Groups
Author: Madabusi S. Raghunathan
Publisher: Springer
ISBN: 9783642864285
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.
Publisher: Springer
ISBN: 9783642864285
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.
Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups
Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282
Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282
Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.
Lie Groups, Lie Algebras, and Representations
Author: Brian Hall
Publisher: Springer
ISBN: 3319134671
Category : Mathematics
Languages : en
Pages : 452
Book Description
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Publisher: Springer
ISBN: 3319134671
Category : Mathematics
Languages : en
Pages : 452
Book Description
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Discrete Subgroups of Lie Groups
Author: M. S. Raghunathan
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 250
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 250
Book Description
Lie Groups and Algebraic Groups
Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
p-Adic Lie Groups
Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 364221147X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.
Publisher: Springer Science & Business Media
ISBN: 364221147X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.
Harmonic Analysis and Representations of Semisimple Lie Groups
Author: J.A. Wolf
Publisher: Springer Science & Business Media
ISBN: 940098961X
Category : Science
Languages : en
Pages : 498
Book Description
This book presents the text of the lectures which were given at the NATO Advanced Study Institute on Representations of Lie groups and Harmonic Analysis which was held in Liege from September 5 to September 17, 1977. The general aim of this Summer School was to give a coordinated intro duction to the theory of representations of semisimple Lie groups and to non-commutative harmonic analysis on these groups, together with some glance at physical applications and at the related subject of random walks. As will appear to the reader, the order of the papers - which follows relatively closely the order of the lectures which were actually give- follows a logical pattern. The two first papers are introductory: the one by R. Blattner describes in a very progressive way a path going from standard Fourier analysis on IR" to non-commutative harmonic analysis on a locally compact group; the paper by J. Wolf describes the structure of semisimple Lie groups, the finite-dimensional representations of these groups and introduces basic facts about infinite-dimensional unitary representations. Two of the editors want to thank particularly these two lecturers who were very careful to pave the way for the later lectures. Both these chapters give also very useful guidelines to the relevant literature.
Publisher: Springer Science & Business Media
ISBN: 940098961X
Category : Science
Languages : en
Pages : 498
Book Description
This book presents the text of the lectures which were given at the NATO Advanced Study Institute on Representations of Lie groups and Harmonic Analysis which was held in Liege from September 5 to September 17, 1977. The general aim of this Summer School was to give a coordinated intro duction to the theory of representations of semisimple Lie groups and to non-commutative harmonic analysis on these groups, together with some glance at physical applications and at the related subject of random walks. As will appear to the reader, the order of the papers - which follows relatively closely the order of the lectures which were actually give- follows a logical pattern. The two first papers are introductory: the one by R. Blattner describes in a very progressive way a path going from standard Fourier analysis on IR" to non-commutative harmonic analysis on a locally compact group; the paper by J. Wolf describes the structure of semisimple Lie groups, the finite-dimensional representations of these groups and introduces basic facts about infinite-dimensional unitary representations. Two of the editors want to thank particularly these two lecturers who were very careful to pave the way for the later lectures. Both these chapters give also very useful guidelines to the relevant literature.
Discrete Subgroups of Semisimple Lie Groups
Author: Gregori A. Margulis
Publisher: Springer
ISBN: 9783642514456
Category : Mathematics
Languages : en
Pages : 0
Book Description
A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields.
Publisher: Springer
ISBN: 9783642514456
Category : Mathematics
Languages : en
Pages : 0
Book Description
A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields.