Differential Neural Networks for Robust Nonlinear Control

Differential Neural Networks for Robust Nonlinear Control PDF Author: Alexander S. Poznyak
Publisher: World Scientific
ISBN: 9789812811295
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.). Contents: Theoretical Study: Neural Networks Structures; Nonlinear System Identification: Differential Learning; Sliding Mode Identification: Algebraic Learning; Neural State Estimation; Passivation via Neuro Control; Neuro Trajectory Tracking; Neurocontrol Applications: Neural Control for Chaos; Neuro Control for Robot Manipulators; Identification of Chemical Processes; Neuro Control for Distillation Column; General Conclusions and Future Work; Appendices: Some Useful Mathematical Facts; Elements of Qualitative Theory of ODE; Locally Optimal Control and Optimization. Readership: Graduate students, researchers, academics/lecturers and industrialists in neural networks.

Differential Neural Networks for Robust Nonlinear Control

Differential Neural Networks for Robust Nonlinear Control PDF Author: Alexander S. Poznyak
Publisher: World Scientific
ISBN: 9789812811295
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.). Contents: Theoretical Study: Neural Networks Structures; Nonlinear System Identification: Differential Learning; Sliding Mode Identification: Algebraic Learning; Neural State Estimation; Passivation via Neuro Control; Neuro Trajectory Tracking; Neurocontrol Applications: Neural Control for Chaos; Neuro Control for Robot Manipulators; Identification of Chemical Processes; Neuro Control for Distillation Column; General Conclusions and Future Work; Appendices: Some Useful Mathematical Facts; Elements of Qualitative Theory of ODE; Locally Optimal Control and Optimization. Readership: Graduate students, researchers, academics/lecturers and industrialists in neural networks.

Differential Neural Networks For Robust Nonlinear Control: Identification, State Estimation And Trajectory Tracking

Differential Neural Networks For Robust Nonlinear Control: Identification, State Estimation And Trajectory Tracking PDF Author: Alex Poznyak
Publisher: World Scientific
ISBN: 9814491020
Category : Computers
Languages : en
Pages : 455

Get Book Here

Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).

Applied Artificial Higher Order Neural Networks for Control and Recognition

Applied Artificial Higher Order Neural Networks for Control and Recognition PDF Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1522500642
Category : Computers
Languages : en
Pages : 538

Get Book Here

Book Description
In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.

Artificial Higher Order Neural Networks for Modeling and Simulation

Artificial Higher Order Neural Networks for Modeling and Simulation PDF Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1466621761
Category : Computers
Languages : en
Pages : 455

Get Book Here

Book Description
"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Artificial Higher Order Neural Networks for Economics and Business

Artificial Higher Order Neural Networks for Economics and Business PDF Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1599048981
Category : Computers
Languages : en
Pages : 541

Get Book Here

Book Description
"This book is the first book to provide opportunities for millions working in economics, accounting, finance and other business areas education on HONNs, the ease of their usage, and directions on how to obtain more accurate application results. It provides significant, informative advancements in the subject and introduces the HONN group models and adaptive HONNs"--Provided by publisher.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1615207120
Category : Computers
Languages : en
Pages : 660

Get Book Here

Book Description
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control PDF Author: Edgar N. Sanchez
Publisher: Springer
ISBN: 3540782893
Category : Technology & Engineering
Languages : en
Pages : 116

Get Book Here

Book Description
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Advances in Neural Networks - ISNN 2004

Advances in Neural Networks - ISNN 2004 PDF Author: Fuliang Yin
Publisher: Springer
ISBN: 3540286489
Category : Computers
Languages : en
Pages : 1054

Get Book Here

Book Description
This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.

Reinforcement Learning for Optimal Feedback Control

Reinforcement Learning for Optimal Feedback Control PDF Author: Rushikesh Kamalapurkar
Publisher: Springer
ISBN: 331978384X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

Advances in Neural Networks -- ISNN 2011

Advances in Neural Networks -- ISNN 2011 PDF Author: Derong Liu
Publisher: Springer Science & Business Media
ISBN: 3642211100
Category : Computers
Languages : en
Pages : 661

Get Book Here

Book Description
The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.