Author: W. A. Coppel
Publisher: Springer
ISBN: 3540359761
Category : Mathematics
Languages : en
Pages : 103
Book Description
Dichotomies in Stability Theory
Author: W. A. Coppel
Publisher: Springer
ISBN: 3540359761
Category : Mathematics
Languages : en
Pages : 103
Book Description
Publisher: Springer
ISBN: 3540359761
Category : Mathematics
Languages : en
Pages : 103
Book Description
Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Dichotomies and Stability in Nonautonomous Linear Systems
Author: Yu. A. Mitropolsky
Publisher: CRC Press
ISBN: 1482264897
Category : Mathematics
Languages : en
Pages : 390
Book Description
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func
Publisher: CRC Press
ISBN: 1482264897
Category : Mathematics
Languages : en
Pages : 390
Book Description
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func
Stability of Nonautonomous Differential Equations
Author: Luis Barreira
Publisher: Springer
ISBN: 3540747753
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Publisher: Springer
ISBN: 3540747753
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Proceedings of the First International Conference on Difference Equations
Author: John R. Graef
Publisher: CRC Press
ISBN: 9782884491457
Category : Mathematics
Languages : en
Pages : 516
Book Description
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. Initially published in 2005.
Publisher: CRC Press
ISBN: 9782884491457
Category : Mathematics
Languages : en
Pages : 516
Book Description
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. Initially published in 2005.
Time-Variant Systems and Interpolation
Author: I. Gohberg
Publisher: Birkhäuser
ISBN: 3034886152
Category : Science
Languages : en
Pages : 308
Book Description
Publisher: Birkhäuser
ISBN: 3034886152
Category : Science
Languages : en
Pages : 308
Book Description
Advanced Topics in the Theory of Dynamical Systems
Author: G. Fusco
Publisher: Elsevier
ISBN: 1483217892
Category : Mathematics
Languages : en
Pages : 278
Book Description
Advanced Topics in the Theory of Dynamical Systems covers the proceedings of the international conference by the same title, held at Villa Madruzzo, Trento, Italy on June 1-6, 1987. The conference reviews research advances in the field of dynamical systems. This book is composed of 20 chapters that explore the theoretical aspects and problems arising from applications of these systems. Considerable chapters are devoted to finite dimensional systems, with special emphasis on the analysis of existence of periodic solutions to Hamiltonian systems. Other chapters deal with infinite dimensional systems and the developments of methods in the general approach to existence and qualitative analysis problems in the general theory, as well as in the study of particular systems concerning natural sciences. The final chapters discuss the properties of hyperbolic sets, equivalent period doubling, Cauchy problems, and quasiperiodic solitons for nonlinear Klein-Gordon equations. This book is of value to mathematicians, physicists, researchers, and advance students.
Publisher: Elsevier
ISBN: 1483217892
Category : Mathematics
Languages : en
Pages : 278
Book Description
Advanced Topics in the Theory of Dynamical Systems covers the proceedings of the international conference by the same title, held at Villa Madruzzo, Trento, Italy on June 1-6, 1987. The conference reviews research advances in the field of dynamical systems. This book is composed of 20 chapters that explore the theoretical aspects and problems arising from applications of these systems. Considerable chapters are devoted to finite dimensional systems, with special emphasis on the analysis of existence of periodic solutions to Hamiltonian systems. Other chapters deal with infinite dimensional systems and the developments of methods in the general approach to existence and qualitative analysis problems in the general theory, as well as in the study of particular systems concerning natural sciences. The final chapters discuss the properties of hyperbolic sets, equivalent period doubling, Cauchy problems, and quasiperiodic solitons for nonlinear Klein-Gordon equations. This book is of value to mathematicians, physicists, researchers, and advance students.
Impulsive Differential Equations
Author: Drumi Bainov
Publisher: Routledge
ISBN: 1351439103
Category : Mathematics
Languages : en
Pages : 238
Book Description
Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.
Publisher: Routledge
ISBN: 1351439103
Category : Mathematics
Languages : en
Pages : 238
Book Description
Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.
Proceedings of the Conference on Differential & Difference Equations and Applications
Author: Ravi P. Agarwal
Publisher: Hindawi Publishing Corporation
ISBN: 9789775945389
Category : Difference equations
Languages : en
Pages : 1266
Book Description
Publisher: Hindawi Publishing Corporation
ISBN: 9789775945389
Category : Difference equations
Languages : en
Pages : 1266
Book Description
Nonautonomous Dynamics
Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3030342921
Category : Mathematics
Languages : en
Pages : 449
Book Description
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
Publisher: Springer Nature
ISBN: 3030342921
Category : Mathematics
Languages : en
Pages : 449
Book Description
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).