Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 0387748016
Category : Science
Languages : en
Pages : 613
Book Description
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.
Physics and Properties of Narrow Gap Semiconductors
Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 0387748016
Category : Science
Languages : en
Pages : 613
Book Description
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.
Publisher: Springer Science & Business Media
ISBN: 0387748016
Category : Science
Languages : en
Pages : 613
Book Description
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.
Device Physics of Narrow Gap Semiconductors
Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 1441910409
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
Publisher: Springer Science & Business Media
ISBN: 1441910409
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
Narrow-gap Semiconductor Photodiodes
Author: Antoni Rogalski
Publisher: SPIE Press
ISBN: 9780819436191
Category : Science
Languages : en
Pages : 464
Book Description
In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.
Publisher: SPIE Press
ISBN: 9780819436191
Category : Science
Languages : en
Pages : 464
Book Description
In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.
Semiconductor Material and Device Characterization
Author: Dieter K. Schroder
Publisher: John Wiley & Sons
ISBN: 0471739065
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 0471739065
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Fundamentals of Photonics
Author: Bahaa E. A. Saleh
Publisher: John Wiley & Sons
ISBN: 1119702119
Category : Technology & Engineering
Languages : en
Pages : 2127
Book Description
Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.
Publisher: John Wiley & Sons
ISBN: 1119702119
Category : Technology & Engineering
Languages : en
Pages : 2127
Book Description
Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.
Crystalline Semiconducting Materials and Devices
Author: Paul N. Butcher
Publisher: Springer Science & Business Media
ISBN: 1475799004
Category : Science
Languages : en
Pages : 657
Book Description
This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 1475799004
Category : Science
Languages : en
Pages : 657
Book Description
This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Strain Effect in Semiconductors
Author: Yongke Sun
Publisher: Springer Science & Business Media
ISBN: 1441905529
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.
Publisher: Springer Science & Business Media
ISBN: 1441905529
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.
Theory of Optical Processes in Semiconductors
Author: Prasanta Kumar Basu
Publisher: Oxford University Press
ISBN: 0198526202
Category : Science
Languages : en
Pages : 470
Book Description
Semiconductor optoelectronic devices are at the heart of all information generation and processing systems and are likely to be essential components of future optical computers. With more emphasis on optoelectronics and photonics in graduate programmes in physics and engineering, there is aneed for a text providing a basic understanding of the important physical phenomena involved. Such a training is necessary for the design, optimization, and search for new materials, devices, and application areas. This book provides a simple quantum mechanical theory of important optical processes,i.e. band-to-band, intersubband, and excitonic absorption and recombination in bulk, quantum wells, wires, dots, superlattices, and strained layers including electro-optic effects. The classical theory of absorption, quantization of radiation, and band picture based on k.p perturbation has beenincluded to provide the necessary background. Prerequisites for the book are a knowledge of quantum mechanics and solid state theory. Problems have been set at the end of each chapter, some of which may guide the reader to study processes not covered in the book. The application areas of thephenomena are also indicated.
Publisher: Oxford University Press
ISBN: 0198526202
Category : Science
Languages : en
Pages : 470
Book Description
Semiconductor optoelectronic devices are at the heart of all information generation and processing systems and are likely to be essential components of future optical computers. With more emphasis on optoelectronics and photonics in graduate programmes in physics and engineering, there is aneed for a text providing a basic understanding of the important physical phenomena involved. Such a training is necessary for the design, optimization, and search for new materials, devices, and application areas. This book provides a simple quantum mechanical theory of important optical processes,i.e. band-to-band, intersubband, and excitonic absorption and recombination in bulk, quantum wells, wires, dots, superlattices, and strained layers including electro-optic effects. The classical theory of absorption, quantization of radiation, and band picture based on k.p perturbation has beenincluded to provide the necessary background. Prerequisites for the book are a knowledge of quantum mechanics and solid state theory. Problems have been set at the end of each chapter, some of which may guide the reader to study processes not covered in the book. The application areas of thephenomena are also indicated.
Resonant Tunneling in Semiconductors
Author: L.L. Chang
Publisher: Springer Science & Business Media
ISBN: 1461538467
Category : Science
Languages : en
Pages : 526
Book Description
This book contains the proceedings of the NATO Advanced Research Workshop on "Resonant Tunneling in Semiconductors: Physics and Applications", held at Escorial, Spain, on May 14-18, 1990. The tremendous growth in the past two decades in the field of resonant tunneling in semiconductor heterostructures has followed, if not outpaced, the expansion wit nessed in quantum structures in general. Resonant tunneling shares also the multi disciplinary nature of that broad area, with an emphasis on the underlying physics but with a coverage of material systems on the one end and device applications on the other. Indeed, that resonant tunneling provides great flexibility in terms of materials and configurations and that it is inherently a fast process with obvious device impli cations by the presence of a negative differential resistance have contributed to the unrelenting interest in this field. These proceedings consist of 49 refereed articles; they correspond to both invited and contributed talks at the workshop. Because of the intertwinning nature of the subject matter, it has been difficult to subdivide them in well-defined sections. Instead, they are arranged in several broad categories, meant to serve only as guidelines of emphasis on different topics and aspects. The book starts with an introduction to res onant tunneling by providing a perspective of the field in the first article. This is fol lowed by discussions of different material systems with various band-structure effects.
Publisher: Springer Science & Business Media
ISBN: 1461538467
Category : Science
Languages : en
Pages : 526
Book Description
This book contains the proceedings of the NATO Advanced Research Workshop on "Resonant Tunneling in Semiconductors: Physics and Applications", held at Escorial, Spain, on May 14-18, 1990. The tremendous growth in the past two decades in the field of resonant tunneling in semiconductor heterostructures has followed, if not outpaced, the expansion wit nessed in quantum structures in general. Resonant tunneling shares also the multi disciplinary nature of that broad area, with an emphasis on the underlying physics but with a coverage of material systems on the one end and device applications on the other. Indeed, that resonant tunneling provides great flexibility in terms of materials and configurations and that it is inherently a fast process with obvious device impli cations by the presence of a negative differential resistance have contributed to the unrelenting interest in this field. These proceedings consist of 49 refereed articles; they correspond to both invited and contributed talks at the workshop. Because of the intertwinning nature of the subject matter, it has been difficult to subdivide them in well-defined sections. Instead, they are arranged in several broad categories, meant to serve only as guidelines of emphasis on different topics and aspects. The book starts with an introduction to res onant tunneling by providing a perspective of the field in the first article. This is fol lowed by discussions of different material systems with various band-structure effects.
Semiconductor Detector Systems
Author: Helmuth Spieler
Publisher: OUP Oxford
ISBN: 0191523658
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.
Publisher: OUP Oxford
ISBN: 0191523658
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.