Developmental Plasticity of Inhibitory Circuitry

Developmental Plasticity of Inhibitory Circuitry PDF Author: Sarah L. Pallas
Publisher: Springer
ISBN: 1441912436
Category : Medical
Languages : en
Pages : 192

Get Book Here

Book Description
Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging. The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.

Developmental Plasticity of Inhibitory Circuitry

Developmental Plasticity of Inhibitory Circuitry PDF Author: Sarah L. Pallas
Publisher: Springer
ISBN: 1441912436
Category : Medical
Languages : en
Pages : 192

Get Book Here

Book Description
Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging. The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.

Developmental Plasticity of Inhibitory Circuitry

Developmental Plasticity of Inhibitory Circuitry PDF Author: Sarah L. Pallas
Publisher: Springer
ISBN: 9781441912565
Category : Electronic books
Languages : en
Pages : 204

Get Book Here

Book Description


Inhibitory Synaptic Plasticity

Inhibitory Synaptic Plasticity PDF Author: Melanie A. Woodin
Publisher: Springer Science & Business Media
ISBN: 1441969780
Category : Medical
Languages : en
Pages : 191

Get Book Here

Book Description
This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.

Inhibitory Function in Auditory Processing

Inhibitory Function in Auditory Processing PDF Author: R. Michael Burger
Publisher: Frontiers Media SA
ISBN: 2889196674
Category : Auditory perception
Languages : en
Pages : 233

Get Book Here

Book Description
There seems little doubt that from the earliest evolutionary beginnings, inhibition has been a fundamental feature of neuronal circuits - even the simplest life forms sense and interact with their environment, orienting or approaching positive stimuli while avoiding aversive stimuli. This requires internal signals that both drive and suppress behavior. Traditional descriptions of inhibition sometimes limit its role to the suppression of action potential generation. This view fails to capture the vast breadth of inhibitory function now known to exist in neural circuits. A modern perspective on inhibitory signaling comprises a multitude of mechanisms. For example, inhibition can act via a shunting mechanism to speed the membrane time constant and reduce synaptic integration time. It can act via G-protein coupled receptors to initiate second messenger cascades that influence synaptic strength. Inhibition contributes to rhythm generation and can even activate ion channels that mediate inward currents to drive action potential generation. Inhibition also appears to play a role in shaping the properties of neural circuitry over longer time scales. Experience-dependent synaptic plasticity in developing and mature neural circuits underlies behavioral memory and has been intensively studied over the past decade. At excitatory synapses, adjustments of synaptic efficacy are regulated predominantly by changes in the number and function of postsynaptic glutamate receptors. There is, however, increasing evidence for inhibitory modulation of target neuron excitability playing key roles in experience-dependent plasticity. One reason for our limited knowledge about plasticity at inhibitory synapses is that in most circuits, neurons receive convergent inputs from disparate sources. This problem can be overcome by investigating inhibitory circuits in a system with well-defined inhibitory nuclei and projections, each with a known computational function. Compared to other sensory systems, the auditory system has evolved a large number of subthalamic nuclei each devoted to processing distinct features of sound stimuli. This information once extracted is then re-assembled to form the percept the acoustic world around us. The well-understood function of many of these auditory nuclei has enhanced our understanding of inhibition's role in shaping their responses from easily distinguished inhibitory inputs. In particular, neurons devoted to processing the location of sound sources receive a complement of discrete inputs for which in vivo activity and function are well understood. Investigation of these areas has led to significant advances in understanding the development, physiology, and mechanistic underpinnings of inhibition that apply broadly to neuroscience. In this series of papers, we provide an authoritative resource for those interested in exploring the variety of inhibitory circuits and their function in auditory processing. We present original research and focused reviews touching on development, plasticity, anatomy, and evolution of inhibitory circuitry. We hope our readers will find these papers valuable and inspirational to their own research endeavors.

Translational Research in Traumatic Brain Injury

Translational Research in Traumatic Brain Injury PDF Author: Daniel Laskowitz
Publisher: CRC Press
ISBN: 1498766579
Category : Medical
Languages : en
Pages : 388

Get Book Here

Book Description
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme

A Novel Critical Period for Inhibitory Plasticity in Rat Somatosensory Cortex

A Novel Critical Period for Inhibitory Plasticity in Rat Somatosensory Cortex PDF Author: Renna J. Stevens
Publisher:
ISBN: 9781124406831
Category :
Languages : en
Pages : 74

Get Book Here

Book Description
The cerebral cortex encodes sensory information with astonishing precision, but it is also confronted with the impressive task of reworking and rewiring its physiology in the face of a changing environment. Hubel and Weisel first characterized the impact of sensory deprivation on the development of cortical response properties, but there is still much we do not know about which forms of cortical plasticity are induced with sensory deprivation, as well as which cell types and synapses mediate plasticity. While traditional models of cortical plasticity proposed Hebbian ("use it or lose it") rules in excitatory circuits as the primary substrate for cortical plasticity, recent advances to the classical model include an important role for non-Hebbian forms of plasticity, and show that inhibitory circuits are a major site of sensory plasticity. A precisely regulated balance between cortical excitation and inhibition is crucial for sensory processing and plasticity, but our understanding of inhibitory synapse development is lacking. Here we investigate the impact of sensory experience on the development and function of inhibitory synapses in rat primary somatosensory cortex. I deprived the D-row of rat whiskers (beginning on the 7th postnatal day, P7) in order to probe how experience guides inhibitory synapse development. I found that deprivation reduced inhibitory currents at P15 in layer (L) 4 and at P21 in L2/3. Evoked inhibition was also reduced at P15 in L4. This reduction in inhibition constitutes a homeostatic form of plasticity, as it would ultimately increase excitatory activity in response to sensory deprivation. Surprisingly, inhibitory currents recovered to control (spared) levels after this one-day period. Our findings demonstrate that the development of inhibitory signaling in S1 during the first postnatal month occurs in a largely experience-independent fashion, but that sensory deprivation during this period causes a delayed and transient reduction in the efficacy of inhibitory signaling. Our results also reveal that these transient changes in mIPSC amplitude and frequency can be dissociated, meaning that they are mechanistically independent. These results add to the growing body of evidence that inhibitory circuits undergo homeostatic plasticity in response to sensory use and disuse in primary sensory cortex.

Cognitive Plasticity in Neurologic Disorders

Cognitive Plasticity in Neurologic Disorders PDF Author: Joseph I. Tracy
Publisher: Oxford University Press, USA
ISBN: 0199965242
Category : Medical
Languages : en
Pages : 433

Get Book Here

Book Description
This volume makes clear that the cognitive and behavioural symptoms of neurologic disorders and syndromes are dynamic and changing. Each chapter describes the neuroplastic processes at work in a particular condition, giving rise to these ongoing cognitive changes.

Experience-dependent Plasticity of Neocortical Inhibitory Circuits

Experience-dependent Plasticity of Neocortical Inhibitory Circuits PDF Author: Yuanyuan Jiao
Publisher:
ISBN: 9781267323231
Category : Cerebral cortex
Languages : en
Pages : 173

Get Book Here

Book Description


The Auditory Cortex

The Auditory Cortex PDF Author: Jeffery A. Winer
Publisher: Springer Science & Business Media
ISBN: 1441900748
Category : Science
Languages : en
Pages : 711

Get Book Here

Book Description
There has been substantial progress in understanding the contributions of the auditory forebrain to hearing, sound localization, communication, emotive behavior, and cognition. The Auditory Cortex covers the latest knowledge about the auditory forebrain, including the auditory cortex as well as the medial geniculate body in the thalamus. This book will cover all important aspects of the auditory forebrain organization and function, integrating the auditory thalamus and cortex into a smooth, coherent whole. Volume One covers basic auditory neuroscience. It complements The Auditory Cortex, Volume 2: Integrative Neuroscience, which takes a more applied/clinical perspective.

The Neocortex

The Neocortex PDF Author: Wolf Singer
Publisher: MIT Press
ISBN: 0262043246
Category : Science
Languages : en
Pages : 449

Get Book Here

Book Description
Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cortical connectome, and functional properties of neuronal circuits and populations. They explore what constitutes “uniquely human” mental capacities and whether neural solutions and computations can be shared across species or repurposed for potentially uniquely human capacities. Contributors Danielle S. Bassett, Randy M. Bruno, Elizabeth A. Buffalo, Michael E. Coulter, Hermann Cuntz, Stanislas Dehaene, James J. DiCarlo, Pascal Fries, Karl J. Friston, Asif A. Ghazanfar, Anne-Lise Giraud, Joshua I. Gold, Scott T. Grafton, Jennifer M. Groh, Elizabeth A. Grove, Saskia Haegens, Kenneth D. Harris, Kristen M. Harris, Nicholas G. Hatsopoulos, Tarik F. Haydar, Takao K. Hensch, Wieland B. Huttner, Matthias Kaschube, Gilles Laurent, David A. Leopold, Johannes Leugering, Belen Lorente-Galdos, Jason N. MacLean, David A. McCormick, Lucia Melloni, Anish Mitra, Zoltán Molnár, Sydney K. Muchnik, Pascal Nieters, Marcel Oberlaender, Bijan Pesaran, Christopher I. Petkov, Gordon Pipa, David Poeppel, Marcus E. Raichle, Pasko Rakic, John H. Reynolds, Ryan V. Raut, John L. Rubenstein, Andrew B. Schwartz, Terrence J. Sejnowski, Nenad Sestan, Debra L. Silver, Wolf Singer, Peter L. Strick, Michael P. Stryker, Mriganka Sur, Mary Elizabeth Sutherland, Maria Antonietta Tosches, William A. Tyler, Martin Vinck, Christopher A. Walsh, Perry Zurn