Development of Mercury Control Enhancements for Flue-gas Cleanup Systems

Development of Mercury Control Enhancements for Flue-gas Cleanup Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Development of Mercury Control Enhancements for Flue-gas Cleanup Systems

Development of Mercury Control Enhancements for Flue-gas Cleanup Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Enhancement of Mercury Control in Flue-gas Cleanup Systems

Enhancement of Mercury Control in Flue-gas Cleanup Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Ejército; revista ilustrada de las armas y servicios

Ejército; revista ilustrada de las armas y servicios PDF Author:
Publisher:
ISBN:
Category : Communism
Languages : en
Pages : 118

Get Book Here

Book Description


Mercury Control

Mercury Control PDF Author: Evan J. Granite
Publisher: John Wiley & Sons
ISBN: 3527329498
Category : Technology & Engineering
Languages : en
Pages : 479

Get Book Here

Book Description
This essential handbook and ready reference offers a detailed overview of the existing and currently researched technologies available for the control of mercury in coal-derived gas streams and that are viable for meeting the strict standards set by environmental protection agencies. Written by an internationally acclaimed author team from government agencies, academia and industry, it details US, EU, Asia-Pacific and other international perspectives, regulations and guidelines.

Development of Mercury Control Technology for Coal-fired Systems

Development of Mercury Control Technology for Coal-fired Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
The emission of hazardous air pollutants (air toxics) from various industrial processes has emerged as a major environmental issue that was singled out for particular attention in the Clean Air Act Amendments of 1990. In particular, mercury emissions are the subject of several current EPA studies because of concerns over possible serious effects on human health. Some of those emissions originate in the combustion of coal, which contains trace amounts of mercury, and are likely to be the subject of control requirements in the relatively near future. Data collected by the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) at operating electric-power plants have shown that conventional flue-gas cleanup (FGC) technologies are not very effective in controlling emissions of mercury in general, and are particularly poor at controlling emissions of elemental mercury. This paper gives an overview of research being conducted at Argonne National Laboratory on improving the capture of mercury in flue gas through the use of dry sorbents and/or wet scrubbers. The results and conclusions to date from the Argonne research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are not effective in removing elemental mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; chemical pretreatment (e.g., with sulfur or CaCl2) can greatly increase the removal capacity of activated carbon; chemically treated mineral substrates have the potential to be developed into effective and economical mercury sorbents; sorbents treated with different chemicals respond in significantly different ways to changes in flue-gas temperature.

Nanoporous Materials II

Nanoporous Materials II PDF Author: T.J. Pinnavaia
Publisher: Elsevier
ISBN: 008053726X
Category : Science
Languages : en
Pages : 915

Get Book Here

Book Description
The first symposium on Access in Nanoporous Materials was held in Lansing, Michigan on June 7-9, 1995. The five years that have passed since that initial meeting have brought remarkable advances in all aspects of this growing family of materials. In particular, impressive progress has been achieved in the area of novel self-assembled mesoporous materials, their synthesis, characterization and applications. The supramolecular self-assembly of various inorganic and organic species into ordered mesostructures became a powerful method for synthesis of mesoporous molecular sieves of tailored framework composition, pore structure, pore size and desired surface functionality for advanced applications in such areas as separation, adsorption, catalysis, environmental cleanup and nanotechnology.In addition to mesostructured metal oxide molecular sieves prepared through supramolecular assembly pathways, clays, carbon molecular sieves, porous polymers, sol-gel and imprinted materials, as well as self-assembled organic and other zeolite-like materials, have captured the attention of materials researchers around the globe.The contents of the current volume present a sampling of more than 150 oral and poster papers delivered at the Symposium on Access in Nanoporous Materials II held in Banff, Alberta on May 25-30, 2000. About 70% of the papers are devoted to the synthesis of siliceous mesoporous molecular sieves, their modification, characterization and applications, which represent the current research trend in nanoporous materials. The remaining contributions provide some indications on the future developments in the area of non-siliceous molecular sieves and related materials. This book reflects the current trends and advances in this area, which will certainly attract the attention of materials chemists in the 21st century.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 544

Get Book Here

Book Description


Advanced Emissions Control Development Program

Advanced Emissions Control Development Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
McDermott Technology, Inc. (a subsidiary of Babcock & Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock & Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of selenium and mercury, the majority of trace elements are well controlled due to their association with the particulate phase of flue gas. Reflecting the current focus of the US EPA and state environmental agencies on mercury as a potential candidate for regulation, the project specifically targets the measurement and control of mercury species. This paper discusses the results of testing on the quantity and species distribution of mercury while firing Ohio high-sulfur coal to assess the mercury emissions control potential of conventional SO2 and particulate control systems. Results from recent AECDP tests are presented and two alternative mercury speciation methods are compared. The AECDP results clearly show that higher total mercury control efficiency can be achieved with a wet FGD scrubber than recently reported in the interim final US EPA report on HAP emissions from fossil-fired electric utility steam generating units.

Control of Mercury Emissions from Coal-fired Boilers

Control of Mercury Emissions from Coal-fired Boilers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
The Development of Advanced Environmental Control Technology project at Argonne is designed to investigate new concepts leading to advanced control technologies for fossil-energy systems. Within that project, specific research tasks are focused on the development of combined NO(subscript x)/SO2control technologies, evaluation of waste/byproduct materials from advanced flue-gas-cleanup (FGC) systems, and development of new or improved control measures for the abatement of emissions of hazardous air pollutants (HAPs) from fossil-fuel combustion. The last task, which is the subject of this paper, also includes the evaluation of any possible effects of captured HAP species on waste disposal, as well as the evaluation of HAP measuring techniques and instruments. The HAPs currently under investigation in this task include mercury and arsenic compounds. Only experimental activities concerning mercury control are reported in this paper.

Enhanced Control of Mercury Emissions Through Modified Speciation

Enhanced Control of Mercury Emissions Through Modified Speciation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonnes̀ work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg°.