Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications PDF Author: Nathan Heath Patterson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids' on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid's 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively.

Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications PDF Author: Nathan Heath Patterson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids' on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid's 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively.

Lipidomics

Lipidomics PDF Author: Xianlin Han
Publisher: John Wiley & Sons
ISBN: 1118893123
Category : Science
Languages : en
Pages : 48

Get Book Here

Book Description
Covers the area of lipidomics from fundamentals and theory to applications Presents a balanced discussion of the fundamentals, theory, experimental methods and applications of lipidomics Covers different characterizations of lipids including Glycerophospholipids; Sphingolipids; Glycerolipids and Glycolipids; and Fatty Acids and Modified Fatty Acids Includes a section on quantification of Lipids in Lipidomics such as sample preparation; factors affecting accurate quantification; and data processing and interpretation Details applications of Lipidomics Tools including for Health and Disease; Plant Lipidomics; and Lipidomics on Cellular Membranes

Mass Spectrometry for Lipidomics

Mass Spectrometry for Lipidomics PDF Author: Michal Holcapek
Publisher: John Wiley & Sons
ISBN: 3527836500
Category : Science
Languages : en
Pages : 897

Get Book Here

Book Description
Mass Spectrometry for Lipidomics All-in-one guide to successful lipidomic analysis, combining the latest advances and best practices from academia, industry, and clinical research Mass Spectrometry for Lipidomics presents a systematic overview of lipidomic analysis, covering established standards of lipid analysis, available technology, and key lipid classes, as well as applications in basic research, medicine, pharma, and the food industry. Through connecting recent technological advances with key application areas, this unique guide bridges the gap between academia and industry by translating the vast body of knowledge that has been gained in the past decade into much-needed practical advice for novices as well as routine users. Edited by the president and vice-president of the International Lipidomics Society with contributions from the top experts in lipid analysis, Mass Spectrometry for Lipidomics covers a wide range of key topics, including: Aspects of sample preparation, separation methods, different mass spectrometry modes, as well as identification and quantitation, including the use of bioinformatics tools for data analysis Identification, quantitation and profiling of lipids in different types of biological samples Analytical approaches for all major classes of biological lipids, from fatty acids to phospholipids to sterols Novel applications in biological research, clinical diagnostics, as well as food and crop science For analytical chemists, biochemists, clinical chemists, and analytical laboratories and hospitals, Mass Spectrometry for Lipidomics presents a comprehensive and authoritative overview of the subject, with unmatched expertise from practicing professionals actively involved in the latest research.

Development and Application of Methods for Mass Spectrometry Imaging of Lipids Across Biological Surfaces

Development and Application of Methods for Mass Spectrometry Imaging of Lipids Across Biological Surfaces PDF Author: Michael Edward Kurczy
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Time of flight secondary ion mass spectrometric (ToF-SIMS) imaging is a powerful bioanalytical tool with the ability to produce molecular images of samples with submicron spatial resolution without the use of labels. In this thesis I will present the development of ToF-SIMS imaging methodology for biological analyses as well as applications that have yielded information about the role of lipids in membrane organization. In the first chapter, I introduce the plasma membrane and describe its fundamental role in maintaining life through the dynamic remodeling of its structure. I focus on two concepts that are believed to influence the localized chemical make up and structure of the membrane, intrinsic curvature and lipid domains. ToF-SIMS imaging is briefly described and a discussion of cluster ion bombardment and sample preparation is included. The chapter concludes with a survey of several important biological studies that have come out of the SIMS community. In Chapter 2 I report a protocol for the use of SIMS imaging to comparatively quantify the relative difference in cholesterol level between the plasma membranes of two cells. This development enables direct comparison of the chemical effects of different drug treatments and incubation conditions in the plasma membrane at the single-cell level. Relative, quantitative ToF-SIMS imaging was used to compare macrophage cells treated to contain elevated levels of cholesterol with respect to control cells. In-situ fluorescence microscopy with two different membrane dyes was used to discriminate morphologically similar but differentially treated cells prior to SIMS analysis. SIMS images of fluorescently identified cells reveal that the two populations of cells have distinct outer leaflet membrane compositions with the membranes of the cholesterol-treated macrophages containing more than twice the amount of cholesterol of control macrophages. Relative quantification with SIMS to compare the chemical composition of single-cells can provide valuable information about normal biological functions, causative agents of diseases, and possible therapies for diseases. Chapter 3 investigates prospects for three-dimensional SIMS analysis of biological materials using model multilayer structures and single cells. The samples were analyzed in a ToF-SIMS spectrometer equipped with a 20 and a 40 keV buckminsterfullerene (C60+) ion source. Specifically, molecular depth profile studies involving dehydrated dipalmitoylphosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C60+ ion fluences greater than 1015 ions/cm2. Moreover, depth profile analyses of DPPC?sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C60+ sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal. The resulting depth information was used to characterize C60+ bombardment of biological materials. This information was used to controllably remove the plasma membrane of a single macrophage cell using a molecular depth profile approach allowing the analysis of the chemistry of the cytoplasm. Two methods that were developed to increase the reproducibility of biological SIMS analysis are covered in Chapter 4. First I demonstrate the utility of the C60+ cluster ion projectile for sputter cleaning biological surfaces to reveal obscured spatio-chemical information. Following the removal of nanometers of material from the surface using sputter cleaning; a frozen-patterned cholesterol film and a freeze-dried tissue sample were analyzed using ToF-SIMS imaging. In both experiments the chemical information was maintained after the sputter dose, due to the minimal chemical damage caused by C60+ bombardment. In fact, the damage to the surface produced by freeze-drying the tissue sample was found to have a greater effect on the loss of cholesterol signal than the sputter-induced damage. In addition to maintaining the chemical information, sputtering did not alter the spatial distribution of the surface chemistry. This approach removes artifacts that are common to many biological sample preparation schemes for ToF-SIMS imaging. Removing these artifacts, which may obscure the surface chemistry of the sample, will increase the number of analyzable samples for SIMS imaging. The second method covered in Chapter 4 is freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment. This method was used to cryogenically preserve single cells for ToF-SIMS imaging analysis. By removing the excess water, which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. I demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the top most surface layers. In addition, I found water could be controllably re-deposited onto the sample at temperatures below -100 oC in vacuum. The re-deposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures we have obtained high quality images and spectra with both atomic bombardment as well as C60+ cluster ion bombardment. Sample handling is also the topic of Chapter 5. It this chapter, I describe a device which has been designed to prepare frozen, hydrated single cell cultures with a freeze fracture methodology for ToF-SIMS analysis in an ION-TOF (GmbH) TOF-SIMS IV mass spectrometer. The device reproducibly produces frozen hydrated sample surfaces for SIMS analysis. I show that SIMS analysis with the Bi32+ produces high-resolution molecular images of single PC12 cells in an ice matrix. I also show that the combination of ionization enhancements that are provided by both the ice matrix and the cluster ion source facilitates the localization of lipid ions that have not been localized in these cells previously. Namely, two fragments of phosphatidlyethanolamine (m/z 124 and m/z 142) and a large fragment of phosphatidylcholine (m/z 224). The ability to localize and measure these ions will increase the number of question that SIMS imaging can be used to answer. In Chapter 6 ToF-SIMS imaging was used to demonstrate that lipid domain formation in mating single-cell organisms is driven by changes in membrane structure. Studies of lipid bilayers in both living and model systems have revealed that lipid composition is coupled to localized membrane structure. However, it is still not clear if the lipids that compose the membrane actively modify membrane structure or if it is structural changes that cause lipid heterogeneity. I report that time of flight secondary ion mass spectrometry images of mating Tetrahymena thermophila acquired before, during and after mating demonstrate that lipid domain formation, identified as a decrease in the lamellar lipid phosphatidylcholine, does not precede structural changes in the membrane. Rather, domains are formed in response to function during cell-to-cell conjugation. ToF-SIMS imaging has been used to collect information with wide implications in all membrane processes. The work presented here is the continuation of a project aimed at chemically characterizing biological samples with spatially resolved mass spectra, with a particular focus on single cell imaging. Much of the work I have done has centered on understanding the capability of current technology and using this understanding to solve a particular problem. This work is vital to keeping SIMS in the biological realm but the development of new technology is the ultimate future for these experiments by increasing the number of tools that the experimenter has to choose from. In Chapter 7 discuss two ongoing projects that I think will lead to the next break through bringing us closer to realizing the goal of this project: a complete chemical map of a single cell.

Lipidomics

Lipidomics PDF Author: William J Griffiths
Publisher: Royal Society of Chemistry
ISBN: 1788011600
Category : Science
Languages : en
Pages : 300

Get Book Here

Book Description
Lipidomics is one of the emerging ‘omics’ techniques with growing importance in bioscience. Discussing interesting standard and non-standard techniques relevant to the measurement and analysis of lipids by mass spectrometry, this book will provide a guide to the possibilities of the techniques. It will introduce the reader to exciting new methods that allow isomer differentiation, improve sensitivity, allow spatial location and go beyond annotation of simply matching a mass to a database entry. The book is written and edited by the some of the world leaders in the field of lipid mass spectrometry and will have international appeal in industry and academia for analytical chemists, biochemists and biotechnologists. Furthermore, it will provide a useful resource for anyone interested in lipid structure characterization particularly for graduates and postgraduates who require a starting point for their projects.

Medical Applications of Mass Spectrometry

Medical Applications of Mass Spectrometry PDF Author: Karoly Vekey
Publisher: Elsevier
ISBN: 0080554652
Category : Science
Languages : en
Pages : 607

Get Book Here

Book Description
Mass spectrometry is fast becoming an indispensable field for medical professionals. The mass spectrometric analysis of metabolites and proteins promises to revolutionize medical research and clinical diagnostics. As this technology rapidly enters the medical field, practicing professionals and students need to prepare to take full advantage of its capabilities. Medical Applications of Mass Spectrometry addresses the key issues in the medical applications of mass spectrometry at the level appropriate for the intended readership. It will go a long way to help the utilization of mass spectrometry in medicine.The book comprises five parts. A general overview is followed by a description of the basic sampling and separation methods in analytical chemistry. In the second part a solid foundation in mass spectrometry and modern techniques of data analysis is presented. The third part explains how mass spectrometry is used in exploring various classes of biomolecules, including proteins and lipids. In the fourth section mass spectrometry is introduced as a diagnostic tool in clinical treatment, infectious pathogen research, neonatal diagnostics, cancer, brain and allergy research, as well as in various fields of medicine: cardiology, pulmonology, neurology, psychiatric diseases, hemato-oncology, urologic diseases, gastrointestinal diseases, gynecology and pediatrics. The fifth part covers emerging applications in biomarker discovery and in mass spectrometric imaging. * Provides a broad look at how the medical field is benefiting from advances in mass spectrometry.* Guides the reader from basic principles and methods to cutting edge applications.* There is NO comparable book on the market to fill this fast growing field.

Lipidomics

Lipidomics PDF Author: Kim Ekroos
Publisher: John Wiley & Sons
ISBN: 3527655964
Category : Science
Languages : en
Pages : 507

Get Book Here

Book Description
Focusing on the practical applications, this user-oriented guide presents current technologies and strategies for systems-level lipid analysis, going beyond basic research to concentrate on commercial uses of lipidomics in biomarker and diagnostic development, as well as within pharmaceutical drug discovery and development. The editor and authors have experience of the most recent analytical instruments and techniques, allowing them to provide here first-hand practical experience for newcomers to the field. The first half of the book covers current methodologies, ranging from global to targeted lipidomics and shotgun approaches, while the second part discusses the role of lipidomics in biomedical and pharmaceutical research, covering such diverse fields as inflammation, metabolic syndrome, cardiovascular and neurological disease. Both small and large-scale, high-throughput approaches are discussed, resulting in an invaluable source for academic and industrial research and development.

Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry

Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry PDF Author: Bindesh Shrestha
Publisher: Elsevier
ISBN: 0128189991
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
Imaging mass spectrometry (MS) techniques are often utilized without an understanding of their underlying principles, making it difficult for scientists to determine when and how they can exploit MS to visualize their biomolecules of interest. Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry is an essential reference to help scientists determine the status and strategies of biomolecule analysis, describing its many applications for diverse classes of biomolecules. The book builds a foundation of imaging MS knowledge by introducing ionization sources, sample preparation, visualization guidelines, molecule identification, quantification, data analysis, etc. The second section contains chapters focused on case studies on analyzing a biomolecule class of molecules. Case studies include an introduction/background, and a summary of successful imaging MS studies with illustrative figures and future directions. Provides the introductory foundations of imaging mass spectrometry for those new to the technique Organized by topic to facilitate a quick deep dive, allowing researchers to immediately apply the imaging MS techniques to their work Includes case studies summarizing the imaging MS techniques developed for the class of molecules

Lipidomics and Bioactive Lipids: Mass Spectrometry Based Lipid Analysis

Lipidomics and Bioactive Lipids: Mass Spectrometry Based Lipid Analysis PDF Author:
Publisher: Elsevier
ISBN: 0080554881
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
This volume in the well-established Methods in Enzymology series features methods for the study of lipids using mass spectrometry techniques. Articles in this volume cover topics such as Qualitative Analysis and Quantitative Assessment of Changes in Neutral Glycerol Lipid Molecular Species within Cells; Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry; Detection and Quantitation of Eicosanoids via High Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry; Structure-specific, quantitative methods for "lipidomic" analysis of sphingolipids by tandem mass spectrometry; Analysis of Ubiquinones, Dolichols and Dolichol Diphosphate-Oligosaccharides by Liquid Chromatography Electrospray Ionization Mass Spectrometry; Extraction and Analysis of Sterols in Biological Matrices by High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry; The Lipid Maps Initiative in Lipidomics; Basic analytical systems for lipidomics by mass spectrometry in Japan; The European Lipidomics Initiative Enabling technologies; Lipidomic analysis of Signaling Pathways; Bioinformatics for Lipidomics; Mediator Lipidomics: Search Algorithms for Eicosanoids, Resolvins and Protectins; A guide to biochemical systems modeling of sphingolipids for the biochemist; and Quantitation and Standardization of Lipid Internal Standards for Mass Spectroscopy.

Mass Spectrometry: Developmental Approaches to Answer Biological Questions

Mass Spectrometry: Developmental Approaches to Answer Biological Questions PDF Author: Gwenael Pottiez
Publisher: Springer
ISBN: 3319130870
Category : Science
Languages : en
Pages : 77

Get Book Here

Book Description
The understanding of the events taking place in a cell, a biological fluid or in any biological system is the main goal of biology research. Many fields of research use different technology to assess those events. Mass spectrometry is one of those techniques and this undergoes constant evolution and adaptation to always enhance the accuracy of the information provided. Proteomics provides a large panel of data on protein identity and protein expression that were made possible by mass spectrometry. For several years now mass spectrometry has become central to performing proteomic research, however this powerful tool is under constant evolution to be more sensitive and more resolute. More importantly mass spectrometry became a field of research focusing on new applications. Indeed, the complexity in biological systems relies on the changes of expression of transcription of proteins but also on the post-translational modification of proteins, the structure of proteins and the interaction between proteins, amongst others. As of now, several investigations tried to improve the quantification of proteins by mass spectrometry, the determination of post-translational modifications, the protein-protein and protein-nucleic acids interaction or the proteins structures. This book is structured as follows: after a brief introduction of the usual and most popular applications for mass spectrometry in proteomics, the most recent research and developments in mass spectrometry-based methodologies will be explored.