Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

Low-cost, Highly Transparent Flexible Low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings

Low-cost, Highly Transparent Flexible Low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 33

Get Book Here

Book Description
Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN's coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.

Metal Electrodeposition

Metal Electrodeposition PDF Author: Magdalena Nuñez
Publisher: Nova Publishers
ISBN: 9781594544569
Category : Science
Languages : en
Pages : 226

Get Book Here

Book Description
Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, and bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This book details advances in metal electrodeposition.

Technology Advancements to Lower Costs of Electrochromic Window Glazing

Technology Advancements to Lower Costs of Electrochromic Window Glazing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, thereby suggesting higher yields as a result of less handling, and therefore lower costs.

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2003 Annual Technical Report

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2003 Annual Technical Report PDF Author:
Publisher: DIANE Publishing
ISBN: 1422345602
Category :
Languages : en
Pages : 196

Get Book Here

Book Description


Energy and Water Development Appropriations for 2006

Energy and Water Development Appropriations for 2006 PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Federal aid to energy development
Languages : en
Pages : 1934

Get Book Here

Book Description


The Department of Energy's FY 1997 Budget Request for the Office of Energy Research (OER)

The Department of Energy's FY 1997 Budget Request for the Office of Energy Research (OER) PDF Author: United States. Congress. House. Committee on Science. Subcommittee on Energy and Environment
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 1348

Get Book Here

Book Description


Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2002 Annual Technical Report

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2002 Annual Technical Report PDF Author:
Publisher: DIANE Publishing
ISBN: 1422345610
Category :
Languages : en
Pages : 221

Get Book Here

Book Description


Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2004 Annual Technical Report

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2004 Annual Technical Report PDF Author:
Publisher: DIANE Publishing
ISBN: 1422345599
Category :
Languages : en
Pages : 196

Get Book Here

Book Description


Nanostructured Electrochromic Materials for Smart Switchable Windows

Nanostructured Electrochromic Materials for Smart Switchable Windows PDF Author: Avinash Balakrishnan
Publisher: CRC Press
ISBN: 0429779607
Category : Technology & Engineering
Languages : en
Pages : 117

Get Book Here

Book Description
This book focuses on next-generation smart windows which can change their optical-physical properties by reflecting and/or transmitting incoming light radiation to attain comfortable indoor temperatures throughout the year. Offers in-depth discussion of a range of materials and devices related to different technologies used in manufacturing smart windows Discusses basic principles, materials synthesis and thin film fabrication, and optical and electrochemical characterization techniques