Author: Irfan Ahmed
Publisher: kassel university press GmbH
ISBN: 373760374X
Category :
Languages : en
Pages : 212
Book Description
The following work summarizes the development of shape-adaptive airfoil profiles for wind turbine application. The underlying motivation of this work is the potential cost effectiveness of wind power conversion through the introduction of shape-adaptive airfoils in future wind turbine blades. The employment of shape adaption system in the wind turbine blade geometry would facilitate a more efficient power harvesting for the next generation of smart wind turbines. In the scope of this work, the concepts of the dedicated shape-adaptive airfoil profiles for wind turbine application are investigated in light of their aerodynamic performances. The concepts of the actuation system are developed while taking pre-defined design boundary conditions suitable for wind turbine application into consideration. A novel numerical approach is developed towards the simulation of fluid-structure interaction for prototype shape-adaptive airfoils. The numerical scheme is employed in designing the shape-adaptive blade prototypes. Effort has been given to develop a unique actuator system for wind turbine application. In a next step, experimental investigations are carried out to quantize the aerodynamic flow-field around the shape-adaptive airfoils. Parallelly, experimental investigations are carried out on a rigid NACA 0012 airfoil to log its performance at different stagger angles. In a further step, numerical investigations are carried out on the different airfoil configurations. Finally, performance analyses of the airfoils are carried out. The shape-adaptive airfoils outperform the rigid NACA 0012 airfoil for the desired performance envelope.
Development of Form-Adaptive Airfoil Profiles for Wind Turbine Application
Author: Irfan Ahmed
Publisher: kassel university press GmbH
ISBN: 373760374X
Category :
Languages : en
Pages : 212
Book Description
The following work summarizes the development of shape-adaptive airfoil profiles for wind turbine application. The underlying motivation of this work is the potential cost effectiveness of wind power conversion through the introduction of shape-adaptive airfoils in future wind turbine blades. The employment of shape adaption system in the wind turbine blade geometry would facilitate a more efficient power harvesting for the next generation of smart wind turbines. In the scope of this work, the concepts of the dedicated shape-adaptive airfoil profiles for wind turbine application are investigated in light of their aerodynamic performances. The concepts of the actuation system are developed while taking pre-defined design boundary conditions suitable for wind turbine application into consideration. A novel numerical approach is developed towards the simulation of fluid-structure interaction for prototype shape-adaptive airfoils. The numerical scheme is employed in designing the shape-adaptive blade prototypes. Effort has been given to develop a unique actuator system for wind turbine application. In a next step, experimental investigations are carried out to quantize the aerodynamic flow-field around the shape-adaptive airfoils. Parallelly, experimental investigations are carried out on a rigid NACA 0012 airfoil to log its performance at different stagger angles. In a further step, numerical investigations are carried out on the different airfoil configurations. Finally, performance analyses of the airfoils are carried out. The shape-adaptive airfoils outperform the rigid NACA 0012 airfoil for the desired performance envelope.
Publisher: kassel university press GmbH
ISBN: 373760374X
Category :
Languages : en
Pages : 212
Book Description
The following work summarizes the development of shape-adaptive airfoil profiles for wind turbine application. The underlying motivation of this work is the potential cost effectiveness of wind power conversion through the introduction of shape-adaptive airfoils in future wind turbine blades. The employment of shape adaption system in the wind turbine blade geometry would facilitate a more efficient power harvesting for the next generation of smart wind turbines. In the scope of this work, the concepts of the dedicated shape-adaptive airfoil profiles for wind turbine application are investigated in light of their aerodynamic performances. The concepts of the actuation system are developed while taking pre-defined design boundary conditions suitable for wind turbine application into consideration. A novel numerical approach is developed towards the simulation of fluid-structure interaction for prototype shape-adaptive airfoils. The numerical scheme is employed in designing the shape-adaptive blade prototypes. Effort has been given to develop a unique actuator system for wind turbine application. In a next step, experimental investigations are carried out to quantize the aerodynamic flow-field around the shape-adaptive airfoils. Parallelly, experimental investigations are carried out on a rigid NACA 0012 airfoil to log its performance at different stagger angles. In a further step, numerical investigations are carried out on the different airfoil configurations. Finally, performance analyses of the airfoils are carried out. The shape-adaptive airfoils outperform the rigid NACA 0012 airfoil for the desired performance envelope.
Wind Energy Explained
Author: James F. Manwell
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Wind Turbine Airfoils and Blades
Author: Jin Chen
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110344386
Category : Science
Languages : en
Pages : 392
Book Description
Wind Turbine Airfoils and Blades introduces new ideas in the design of wind turbine airfoils and blades based on functional integral theory and the finite element method, accompanied by results from wind tunnel testing. The authors also discuss the optimization of wind turbine blades as well as results from aerodynamic analysis. This book is suitable for researchers and engineers in aeronautics and can be used as a textbook for graduate students.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110344386
Category : Science
Languages : en
Pages : 392
Book Description
Wind Turbine Airfoils and Blades introduces new ideas in the design of wind turbine airfoils and blades based on functional integral theory and the finite element method, accompanied by results from wind tunnel testing. The authors also discuss the optimization of wind turbine blades as well as results from aerodynamic analysis. This book is suitable for researchers and engineers in aeronautics and can be used as a textbook for graduate students.
Wind Turbines
Author: Erich Hau
Publisher: Springer Science & Business Media
ISBN: 3540292845
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
Wind Turbines addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields. It is based on the author's experience gained over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics. The second edition accounts for the emerging concerns over increasing numbers of installed wind turbines. In particular, an important new chapter has been added which deals with offshore wind utilisation. All advanced chapters have been extensively revised and in some cases considerably extended
Publisher: Springer Science & Business Media
ISBN: 3540292845
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
Wind Turbines addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields. It is based on the author's experience gained over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics. The second edition accounts for the emerging concerns over increasing numbers of installed wind turbines. In particular, an important new chapter has been added which deals with offshore wind utilisation. All advanced chapters have been extensively revised and in some cases considerably extended
Wind Turbine Aerodynamics and Vorticity-Based Methods
Author: Emmanuel Branlard
Publisher: Springer
ISBN: 3319551647
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.
Publisher: Springer
ISBN: 3319551647
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836
Book Description
Assessment of Research Needs for Wind Turbine Rotor Materials Technology
Author: Committee on Assessment of Research Needs for Wind Turbine Rotor Materials Technology
Publisher: National Academies Press
ISBN: 0309583187
Category : Technology & Engineering
Languages : en
Pages : 119
Book Description
Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.
Publisher: National Academies Press
ISBN: 0309583187
Category : Technology & Engineering
Languages : en
Pages : 119
Book Description
Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.
A Feasibility Study to Control Airfoil Shape Using THUNDER
Author: Jennifer L. Pinkerton
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 40
Book Description
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 40
Book Description
Aerodynamics of Wind Turbines, 2nd edition
Author: Martin O. L. Hansen
Publisher: Routledge
ISBN: 1136572260
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an ?aeroelastic code?, which is widely used in the design and verification of modern wind turbines. Further, the description of how to calculate the vibration of the whole construction, as well as the time varying loads, has been substantially updated.
Publisher: Routledge
ISBN: 1136572260
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an ?aeroelastic code?, which is widely used in the design and verification of modern wind turbines. Further, the description of how to calculate the vibration of the whole construction, as well as the time varying loads, has been substantially updated.
NASA Technical Memorandum
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 230
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 230
Book Description