Development, Modeling, Analysis, and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters

Development, Modeling, Analysis, and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters PDF Author: Khaled Elsaid
Publisher:
ISBN:
Category : Brackish waters
Languages : en
Pages : 173

Get Book Here

Book Description
Groundwater is considered the major source of domestic water supply in many countries worldwide. In the absence of surface water supplies, the use of groundwater for domestic, agricultural, and even for industrial purposes becomes essential, especially in rural communities. Groundwater supplies typically are of good quality, and the quality is reasonably uniform throughout the year compared to that of surface water, thus making it suitable for direct use, or simple to treat. A disadvantage of groundwater is the content of dissolved salt as many have a moderate-to-high salinity. The high salinity makes water brackish and thus it requires desalination before use. This has led to wide use of groundwater desalination to produce good-quality water in many regions around the world. Nevertheless, a problem of desalination processes is the generation of a concentrate stream, sometimes called brine or reject, which must be properly managed. The management of brine from brackish groundwater desalination is a significant issue if located far from the coast (i.e. inland plants) or far from public channel to discharge such brine. Some options for brine disposal from inland desalination plants are evaporation ponds, deep-well injection, disposal to municipal sewers, and irrigation of plants tolerant to high salinities. Each of these disposal methods may result in many environmental problems such as groundwater contamination, the decline in crop yields from agricultural lands, the formation of eyesores, decreasing the efficiency of biological wastewater treatment, and making treated sewage effluent unsuitable for irrigation. As a result, the brine management from inland desalination of brackish groundwater is very critical, and the need for affordable and environmentally benign inland desalination has become crucial in many regions worldwide. This work aims to develop an efficient and environmentally benign process for inland desalination of brackish groundwater, which approaches zero liquid discharge (ZLD), maximizing the water produced and minimizing the volume of concentrate effluent. The technical approach involves utilization of two-stage reverse osmosis (RO) units with the intermediate chemical treatment of brine stream that is designed to remove most of the scale-forming constituents, which foul membrane surface in RO and limits its water recovery and hence enable further recovery of water in the secondary RO unit. The treatment process proposed in this work is based on advanced lime softening processes, which have the ability to effectively remove scale-forming constituents, in addition to heavy metals and natural organic matters that might be present in the brine. The process has been applied to the brine produced from 1st stage RO i.e. primary brine stream, to minimize the volume of the stream to be treated chemically, which in turn reduces the capacity of the treatment equipment. Analysis of groundwater quality and scale-forming constituents that are present in the brine stream upon desalination of groundwater has been performed. The analysis has revealed that in most cases of brackish groundwater desalination the recovery is limited by scaling due to calcium sulfate i.e. gypsum, and amorphous silica. Thus, the main objective set for the chemical treatment of the brine stream focused on removal of calcium, sulfate, and silica. Advanced lime softening based on high lime doses along with sodium aluminate, as in ultra-high lime with alumina UHLA process, has been proposed for chemical treatment of brine. Bench-scale experiments conducted to evaluate the effectiveness of the proposed chemical treatment for removal of scale-forming constituents, particularly calcium, sulfate, and silica by studying the different factors affecting the removals efficiency from synthetic solutions containing sulfate-only, silica-only, and model brine solution. The results obtained have revealed that the proposed process was very effective and results generally in high and quick removals of calcium, sulfate, and silica of more than 80% within 2 hrs under different experimental conditions. In addition, beneficial uses of different solid byproducts formed are investigated, by analyzing the solids resulted to qualitatively and quantitatively to identify the different solids present. This offers the potential to lower both costs and solid disposal problems of solids formed being considered as added value product rather than solid waste that has to be properly managed. Results have shown that the solid precipitate contains a wide range of solids that generally composed of calcium, magnesium, aluminum along with carbonate, sulfate, and silicate, which have several potential applications as soil sub-grade, and in cement industry. Equilibrium model to simulate the chemical treatment process that is able to predict the required chemical reagents doses, effluent water quality for a given influent water quality and treatment levels has been developed utilizing OLI stream analyzer, the developed model was found to well predict the performance of the chemical treatment at equilibrium conditions. Rigorous membrane separation model has developed in Aspen Custom Modeler to more accurately model RO desalination, which is to be combined with the developed equilibrium model to formulate a complete 1st Stage RO-Chemical Treatment-2nd Stage RO process model. The developed complete and validated model has been then used to fully and accurately simulate the performance of the proposed Zero Liquid Discharge desalination process. The present work results in three novel achievements: first, introducing a very effective intermediate chemical treatment, which efficiently remove sulfate, particularly from brine. Most of the previously proposed intermediate treatment processes remove sulfate as calcium sulfate i.e. gypsum, however in the introduced process, sulfate is removed in calcium-aluminum-sulfate complexes, which has very low solubility, making the brine highly undersaturated with respect to gypsum, and hence lowering the fouling propensity in the secondary RO, leading to maximizing the overall recovery. In addition, the chemical treatment has been successfully modeled for better simulate of its performance for different brine qualities, which are usually encountered in brackish ground desalination due to the high location-specific nature of groundwater quality. Second, the developed membrane model has treated the species present in water as ions, accounting for monovalent and divalent ions separately, and obtaining a different permeability coefficient for their transport through the membrane. This is different from most developed RO models, which simplify the transport through the membranes to only water and salt permeability coefficients. This treatment results in better and more refined modeling and simulation of the RO membrane separation, as the RO membrane interact differently to ions present in water. Third, the complete process model, results from combining the developed equilibrium model of the chemical treatment, and membrane separation model, has revealed very promising results of achieving high recovery desalination of about 93.5% suitable for drinking water purposes, which is higher by about 90% than most of the reported literature, whose result in reducing the brine volume from 25% in conventional desalination to only 6.5% in the proposed process, i.e. brine volume reduction of 74% relative to conventional inland desalination, and 35% relative to other high recovery processes, at reasonable chemical treatment levels.

Development, Modeling, Analysis, and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters

Development, Modeling, Analysis, and Optimization of a Novel Inland Desalination with Zero Liquid Discharge for Brackish Groundwaters PDF Author: Khaled Elsaid
Publisher:
ISBN:
Category : Brackish waters
Languages : en
Pages : 173

Get Book Here

Book Description
Groundwater is considered the major source of domestic water supply in many countries worldwide. In the absence of surface water supplies, the use of groundwater for domestic, agricultural, and even for industrial purposes becomes essential, especially in rural communities. Groundwater supplies typically are of good quality, and the quality is reasonably uniform throughout the year compared to that of surface water, thus making it suitable for direct use, or simple to treat. A disadvantage of groundwater is the content of dissolved salt as many have a moderate-to-high salinity. The high salinity makes water brackish and thus it requires desalination before use. This has led to wide use of groundwater desalination to produce good-quality water in many regions around the world. Nevertheless, a problem of desalination processes is the generation of a concentrate stream, sometimes called brine or reject, which must be properly managed. The management of brine from brackish groundwater desalination is a significant issue if located far from the coast (i.e. inland plants) or far from public channel to discharge such brine. Some options for brine disposal from inland desalination plants are evaporation ponds, deep-well injection, disposal to municipal sewers, and irrigation of plants tolerant to high salinities. Each of these disposal methods may result in many environmental problems such as groundwater contamination, the decline in crop yields from agricultural lands, the formation of eyesores, decreasing the efficiency of biological wastewater treatment, and making treated sewage effluent unsuitable for irrigation. As a result, the brine management from inland desalination of brackish groundwater is very critical, and the need for affordable and environmentally benign inland desalination has become crucial in many regions worldwide. This work aims to develop an efficient and environmentally benign process for inland desalination of brackish groundwater, which approaches zero liquid discharge (ZLD), maximizing the water produced and minimizing the volume of concentrate effluent. The technical approach involves utilization of two-stage reverse osmosis (RO) units with the intermediate chemical treatment of brine stream that is designed to remove most of the scale-forming constituents, which foul membrane surface in RO and limits its water recovery and hence enable further recovery of water in the secondary RO unit. The treatment process proposed in this work is based on advanced lime softening processes, which have the ability to effectively remove scale-forming constituents, in addition to heavy metals and natural organic matters that might be present in the brine. The process has been applied to the brine produced from 1st stage RO i.e. primary brine stream, to minimize the volume of the stream to be treated chemically, which in turn reduces the capacity of the treatment equipment. Analysis of groundwater quality and scale-forming constituents that are present in the brine stream upon desalination of groundwater has been performed. The analysis has revealed that in most cases of brackish groundwater desalination the recovery is limited by scaling due to calcium sulfate i.e. gypsum, and amorphous silica. Thus, the main objective set for the chemical treatment of the brine stream focused on removal of calcium, sulfate, and silica. Advanced lime softening based on high lime doses along with sodium aluminate, as in ultra-high lime with alumina UHLA process, has been proposed for chemical treatment of brine. Bench-scale experiments conducted to evaluate the effectiveness of the proposed chemical treatment for removal of scale-forming constituents, particularly calcium, sulfate, and silica by studying the different factors affecting the removals efficiency from synthetic solutions containing sulfate-only, silica-only, and model brine solution. The results obtained have revealed that the proposed process was very effective and results generally in high and quick removals of calcium, sulfate, and silica of more than 80% within 2 hrs under different experimental conditions. In addition, beneficial uses of different solid byproducts formed are investigated, by analyzing the solids resulted to qualitatively and quantitatively to identify the different solids present. This offers the potential to lower both costs and solid disposal problems of solids formed being considered as added value product rather than solid waste that has to be properly managed. Results have shown that the solid precipitate contains a wide range of solids that generally composed of calcium, magnesium, aluminum along with carbonate, sulfate, and silicate, which have several potential applications as soil sub-grade, and in cement industry. Equilibrium model to simulate the chemical treatment process that is able to predict the required chemical reagents doses, effluent water quality for a given influent water quality and treatment levels has been developed utilizing OLI stream analyzer, the developed model was found to well predict the performance of the chemical treatment at equilibrium conditions. Rigorous membrane separation model has developed in Aspen Custom Modeler to more accurately model RO desalination, which is to be combined with the developed equilibrium model to formulate a complete 1st Stage RO-Chemical Treatment-2nd Stage RO process model. The developed complete and validated model has been then used to fully and accurately simulate the performance of the proposed Zero Liquid Discharge desalination process. The present work results in three novel achievements: first, introducing a very effective intermediate chemical treatment, which efficiently remove sulfate, particularly from brine. Most of the previously proposed intermediate treatment processes remove sulfate as calcium sulfate i.e. gypsum, however in the introduced process, sulfate is removed in calcium-aluminum-sulfate complexes, which has very low solubility, making the brine highly undersaturated with respect to gypsum, and hence lowering the fouling propensity in the secondary RO, leading to maximizing the overall recovery. In addition, the chemical treatment has been successfully modeled for better simulate of its performance for different brine qualities, which are usually encountered in brackish ground desalination due to the high location-specific nature of groundwater quality. Second, the developed membrane model has treated the species present in water as ions, accounting for monovalent and divalent ions separately, and obtaining a different permeability coefficient for their transport through the membrane. This is different from most developed RO models, which simplify the transport through the membranes to only water and salt permeability coefficients. This treatment results in better and more refined modeling and simulation of the RO membrane separation, as the RO membrane interact differently to ions present in water. Third, the complete process model, results from combining the developed equilibrium model of the chemical treatment, and membrane separation model, has revealed very promising results of achieving high recovery desalination of about 93.5% suitable for drinking water purposes, which is higher by about 90% than most of the reported literature, whose result in reducing the brine volume from 25% in conventional desalination to only 6.5% in the proposed process, i.e. brine volume reduction of 74% relative to conventional inland desalination, and 35% relative to other high recovery processes, at reasonable chemical treatment levels.

Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering

Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering PDF Author: Abdel-Mohsen O. Mohamed
Publisher: Butterworth-Heinemann
ISBN: 0081010575
Category : Technology & Engineering
Languages : en
Pages : 1172

Get Book Here

Book Description
Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering provides an integrated reference for academics and professionals working on land, air, and water pollution. The protocols discussed and the extensive number of case studies help environmental engineers to quickly identify the correct process for projects under study. The book is divided into four parts; each of the first three covers a separate environment: Geosphere, Atmosphere, and Hydrosphere. The first part covers ground assessment, contamination, geo-statistics, remote sensing, GIS, risk assessment and management, and environmental impact assessment. The second part covers atmospheric assessment topics, including the dynamics of contaminant transport, impacts of global warming, indoor and outdoor techniques and practice. The third part is dedicated to the hydrosphere including both the marine and fresh water environments. Finally, part four examines emerging issues in pollution assessment, from nanomaterials to artificial intelligence. There are a wide variety of case studies in the book to help bridge the gap between concept and practice. Environmental Engineers will benefit from the integrated approach to pollution assessment across multiple spheres. Practicing engineers and students will also benefit from the case studies, which bring the practice side by side with fundamental concepts. Provides a comprehensive overview of pollution assessment Covers land, underground, water and air pollution Includes outdoor and indoor pollution assessment Presents case studies that help bridge the gap between concepts and practice

Sustainable Desalination and Water Reuse

Sustainable Desalination and Water Reuse PDF Author: Eric M.V. Hoek
Publisher: Springer Nature
ISBN: 3031795083
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into the most versatile and effective desalination and advanced water treatment technology available. However, there remain certain challenges for improving the cost-effectiveness and sustainability of RO desalination plants in various applications. In low-pressure RO applications, both capital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends to be limited by the salinity limits on brine discharge and cost is dominated by energy demand. The combination of water scarcity and sustainability imperatives, in many locations, is driving system designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles of RO processes, the state-of-the-art for RO membranes, modules and system designs as well as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and renewable energy powered desalination systems. Throughout, we provide examples of installations employing conventional and some novel approaches towards high recovery RO in a range of applications from brackish groundwater desalination to oil and gas produced water treatment and seawater desalination.

Desalination:

Desalination: PDF Author: Committee on Advancing Desalination Technology
Publisher: National Academies Press
ISBN: 030913434X
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
There has been an exponential increase in desalination capacity both globally and nationally since 1960, fueled in part by growing concern for local water scarcity and made possible to a great extent by a major federal investment for desalination research and development. Traditional sources of supply are increasingly expensive, unavailable, or controversial, but desalination technology offers the potential to substantially reduce water scarcity by converting the almost inexhaustible supply of seawater and the apparently vast quantities of brackish groundwater into new sources of freshwater. Desalination assesses the state of the art in relevant desalination technologies, and factors such as cost and implementation challenges. It also describes reasonable long-term goals for advancing desalination technology, posits recommendations for action and research, estimates the funding necessary to support the proposed research agenda, and identifies appropriate roles for governmental and nongovernmental entities.

Zero Liquid Discharge for Inland Desalination

Zero Liquid Discharge for Inland Desalination PDF Author: Rick Bond
Publisher:
ISBN: 9781583215708
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description
This research investigates technologies that reduce treatment costs and energy consumption for zero liquid discharge (ZLD) desalination, utilizing five test water sites in Arizona, Nevada, California, and Texas.

Technical and Economic Modeling for Sustainable Desalination

Technical and Economic Modeling for Sustainable Desalination PDF Author: Adam Ahmed Atia
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Namely, wastewater effluent, brackish groundwater, agricultural drainage water, and produced water were considered in this analysis as alternatives for alleviating water scarcity. We formulated a conservative estimate of groundwater availability based on environmental flow limits. Additionally, agricultural drainage volumes were estimated based on USGS water use data. Overall, the results showed that water deficits amounted to an equivalent daily capacity of 149 million m3/day--nearly 50% more than the desalination capacity of the world in 2020. Furthermore, the total availability of alternative water sources was estimated to be between 192 - 240 million m3/day, but most of this volume was not in the same location as deficits. Thus, 58 - 65% of national water deficits would have to be alleviated via long-range transport. Additionally, the potential for integrating desalination and water reuse by interconnecting existing RO plants with wastewater treatments plants was also assessed.

Review of the Desalination and Water Purification Technology Roadmap

Review of the Desalination and Water Purification Technology Roadmap PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309091578
Category : Nature
Languages : en
Pages : 85

Get Book Here

Book Description
The Bureau of Reclamation and Sandia National Laboratories jointly developed the Roadmap to serve as a strategic research pathway for desalination and water purification technologies to meet future water needs. The book recommends that the Roadmap include a sharper focus on the research and technological advancements needed to reach the long-term objectives. The book also suggests that the environmental, economic, and social costs of energy required by increased dependence on desalination be examined. Strategies for implementing the Roadmap initiative are provided.

Membrane Based Desalination

Membrane Based Desalination PDF Author: Enrico Drioli
Publisher: IWA Publishing
ISBN: 1843393212
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
Reverse osmosis is the dominant technology in water desalination. However, some critical issues remain open: improvement of water quality, enhancement of the recovery factor, reduction of the unit water cost, minimizing the brine disposal impact. This book aims to solve these problems with an innovative approach based on the integration of different membrane operations in pre-treatment and post-treatment stages. Membrane-Based Desalination: An Integrated Approach (acronym MEDINA) has been a three year project funded by the European Commission within the 6th Framework Program. The project team has developed a work programme aiming to improve the current design and operation practices of membrane systems used for water desalination, trying to solve or, at least, to decrease the critical issues of sea and brackish water desalination systems. In the book, the main results achieved in the nine Work Packages constituting the project will be described, and dismissed by the leaders of the various WPs. The following areas are explored in the book: the development of advanced analytical methods for feed water characterization, appropriate fouling indicators and prediction tools, procedures and protocols at full-scale desalination facilities; the identification of optimal seawater pre-treatment strategies by designing advanced hybrid membrane processes (submerged hollow fibre filtration/reaction, adsorption/ion exchange/ozonation) and comparison with conventional methods; the optimisation of RO membrane module configuration, cleaning strategies, reduction of scaling potential by NF; the development of strategies aiming to approach the concept of Zero Liquid Discharge (increasing the water recovery factor up to 95% by using Membrane Distillation - MD; bringing concentrates to solids by Membrane Crystallization or Wind Intensified Enhanced Evaporation) and to reduce the brine disposal environmental impact and cost; increase the sustainability of desalination process by reducing energy consumption (evaluation of MD, demonstration of a new energy recovery device for SWRO installations) and use of renewable energy (wind and solar). Colour figures (PDF, 6MB) Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/WaterdesalinationandEuropeanresearch

Sustainable Desalination Handbook

Sustainable Desalination Handbook PDF Author: Gnaneswar Gude
Publisher: Butterworth-Heinemann
ISBN: 0128094966
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
Sustainable Desalination Handbook: Plant Selection, Design and Implementation provides the comprehensive knowledge base required for efficient and sustainable process design for existing and new desalination plants around the world. This valuable resource for understanding and utilizing the most recent developments in desalination technologies and methods addresses the necessary components, including process design and implementation, operational strategies, and novel discoveries that minimize environmental impacts. In addition, the book features essential illustrations, operational details, issues and potential solutions and sustainable management strategies for present and future desalination plants. Explains plant design and process selection criteria for each desalination process Presents international regulations and permitting for intake and discharge locations, design and disposal Provides energy recovery schemes, optimization and process controls Covers renewable energy sources, such as nuclear, geothermal, solar and wind powered desalination, energy storage and optimization Includes case studies of recent desalination projects and process design

A Novel Approach to Seawater Desalination Using Dual-staged Nanofiltration

A Novel Approach to Seawater Desalination Using Dual-staged Nanofiltration PDF Author:
Publisher: American Water Works Association
ISBN: 1583214658
Category : Nanofiltration
Languages : en
Pages : 164

Get Book Here

Book Description
An alternative to desalting seawater by the traditional seawater RO (SWRO) method is a novel dual-staged nanofiltration (NF2) process developed by the Long Beach Water Department (LBWD). With this as a basis, this report investigated The capability of dual-staged nanofiltration for seawater desalination to reduce operational costs was assessed through a research plan divided into four phases: theoretical basis of the system (governing equations, membrane suitability, etc.); operational optimization approaches (pilot tests and use of a predictive model); preliminary strategies for blending desalinated water with existing finished water; and verification of inherent redundancy of the process with viral challenge tests.