Development, Calibration, and Validation of Performance Prediction Models for the Texas M-E Flexible Pavement Design System

Development, Calibration, and Validation of Performance Prediction Models for the Texas M-E Flexible Pavement Design System PDF Author: Fujie Zhou
Publisher:
ISBN:
Category : Pavements, Flexible
Languages : en
Pages : 200

Get Book Here

Book Description

Development, Calibration, and Validation of Performance Prediction Models for the Texas M-E Flexible Pavement Design System

Development, Calibration, and Validation of Performance Prediction Models for the Texas M-E Flexible Pavement Design System PDF Author: Fujie Zhou
Publisher:
ISBN:
Category : Pavements, Flexible
Languages : en
Pages : 200

Get Book Here

Book Description


Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields PDF Author: Inge Hoff
Publisher: CRC Press
ISBN: 100073871X
Category : Technology & Engineering
Languages : en
Pages : 673

Get Book Here

Book Description
Innovations in Road, Railway and Airfield Bearing Capacity – Volume 3 comprises the third part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field.

Asphalt Pavements

Asphalt Pavements PDF Author: Y. Richard Kim
Publisher: CRC Press
ISBN: 1315736756
Category : Technology & Engineering
Languages : en
Pages : 1966

Get Book Here

Book Description
Asphalt Pavements contains the proceedings of the International Conference on Asphalt Pavements (Raleigh, North Carolina, USA, 1-5 June 2014), and discusses recent advances in theory and practice in asphalt materials and pavements. The contributions cover a wide range of topics:- Environmental protection and socio-economic impacts- Additives and mo

Implementation of Texas Mechanistic-empirical Flexible Pavement Design System (TxME)

Implementation of Texas Mechanistic-empirical Flexible Pavement Design System (TxME) PDF Author: Sheng Hu
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 144

Get Book Here

Book Description
The Texas Mechanistic-Empirical flexible pavement design system (TxME) allows Texas pavement designers to take full advantage of new or premium materials, with a full consideration of the influential factors including pavement structure, traffic volume, and environmental condition. To further enhance and implement the software, extensive lab testing was conducted to develop default material properties. These properties include the default dynamic modulus, rutting and cracking properties of asphalt concrete (AC) mixtures, and moduli of other layer materials. Specifically, the relationships between reclaimed asphalt pavement/reclaimed asphalt shingles contents and the AC material properties were established and incorporated into the TxME. In addition, default load spectra and initial construction cost analysis were integrated into the TxME. All these features greatly enhanced the practicality and ease of using TxME when conducting pavement design. The Texas Flexible Pavement Database was used to calibrate the TxME performance models. The calibrated TxME was then employed to predict performance of 11 identified test sections located in six different districts. The comparison between the TxME predictions and the field performance survey results further confirmed the validation of the calibrated performance models. Overall, the current TxME is practical, user-friendly, and ready for statewide implementation.

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide PDF Author:
Publisher: AASHTO
ISBN: 1560514493
Category : Technology & Engineering
Languages : en
Pages : 202

Get Book Here

Book Description
This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Local Calibration of the MEPDG for Flexible Pavement Design

Local Calibration of the MEPDG for Flexible Pavement Design PDF Author: Y. Richard Kim
Publisher:
ISBN:
Category : Highway engineering
Languages : en
Pages : 234

Get Book Here

Book Description
In an effort to move toward pavement designs that employ mechanistic principles, the AASHTO Joint Task Force on Pavements initiated an effort in 1996 to develop an improved pavement design guide. The project called for the development of a design guide that employs existing state-of-the-practice mechanistic-based models and design procedures. The product of this initiative became available in 2004 in the form of software called the Mechanistic-Empirical Pavement Design Guide (MEPDG). The performance prediction models in the MEPDG were calibrated and validated using performance data measured from hundreds of pavement sections across the United States. However, these nationally calibrated performance models in the MEPDG do not necessarily reflect local materials, local construction practices, and local traffic characteristics. Therefore, in order to produce accurate pavement designs for the State of North Carolina, the MEPDG distress prediction models must be recalibrated using local materials, traffic, and environmental data. The North Carolina Department of Transportation (NCDOT) has decided to adopt the MEPDG for future pavement design work and has awarded a series of research projects to North Carolina State University. The primary objective of this study is to calibrate the MEPDG performance prediction models for local materials and conditions using the data and findings generated from this series of research projects. The work presented in this report focuses on four major topics: (1) the development of a GIS-based methodology to enable the extraction of local subgrade soils data from a national soils database; (2) the rutting and fatigue cracking performance characterization of twelve asphalt mixtures commonly used in North Carolina; (3) the characterization of local North Carolina traffic; and (4) calibration of the flexible pavement distress prediction models in the MEPDG to reflect local materials and conditions.

Advances in Materials and Pavement Prediction

Advances in Materials and Pavement Prediction PDF Author: Eyad Masad
Publisher: CRC Press
ISBN: 0429855796
Category : Technology & Engineering
Languages : en
Pages : 879

Get Book Here

Book Description
Advances in Materials and Pavement Performance Prediction contains the papers presented at the International Conference on Advances in Materials and Pavement Performance Prediction (AM3P, Doha, Qatar, 16- 18 April 2018). There has been an increasing emphasis internationally in the design and construction of sustainable pavement systems. Advances in Materials and Pavement Prediction reflects this development highlighting various approaches to predict pavement performance. The contributions discuss links and interactions between material characterization methods, empirical predictions, mechanistic modeling, and statistically-sound calibration and validation methods. There is also emphasis on comparisons between modeling results and observed performance. The topics of the book include (but are not limited to): • Experimental laboratory material characterization • Field measurements and in situ material characterization • Constitutive modeling and simulation • Innovative pavement materials and interface systems • Non-destructive measurement techniques • Surface characterization, tire-surface interaction, pavement noise • Pavement rehabilitation • Case studies Advances in Materials and Pavement Performance Prediction will be of interest to academics and engineers involved in pavement engineering.

Local Calibration of the MEPDG for Flexible Pavement Design

Local Calibration of the MEPDG for Flexible Pavement Design PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The 1993 American Association of State Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures is a mere modification of the empirical methods found in its earlier versions that are based on regression equations relating simple material and traffic inputs. Although the various editions of the AASHTO design guide have served well for several decades, they contain too many limitations to be continued as the nation's primary pavement design procedures. The Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure, on the other hand, provides the tools for evaluating the effect of variations in input data on pavement performance. The design method in the MEPDG is mechanistic because it uses stresses and strains in a pavement system calculated from the pavement response model to predict the performance of the pavement. The empirical nature of the design method stems from the fact that the pavement performance predicted from laboratory-developed performance models is adjusted based on the observed performance from the field to reflect the differences between predicted and actual field performance. The performance models used in the MEPDG are calibrated using limited national databases and, thus, it is necessary to calibrate these models for local highway agencies implementation by taking into account local materials, traffic information, and environmental conditions. Two distress models, permanent deformation and bottom-up fatigue cracking (hereafter referred to as alligator cracking), were employed for this effort. Fifty-three pavement sections were selected for the calibration and validation process: 30 long-term pavement performance (LTPP) pavements, which include 16 new flexible pavement sections and 14 rehabilitated sections, and 23 North Carolina Department of Transportation (NCDOT) sections. All the necessary data were obtained from the LTPP and the NCDOT databases. To provide reasonable values in cases where data were missing, MEP.

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Reference manual

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Reference manual PDF Author: Harold L. Von Quintus
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages :

Get Book Here

Book Description


Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States

Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States PDF Author: Shariq A. Momin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) 1-37A project is based on mechanistic-empirical analysis of the pavement structure to predict the performance of the pavement under different sets of conditions (traffic, structure and environment). MEPDG takes into account the advanced modeling concepts and pavement performance models in performing the analysis and design of pavement. The mechanistic part of the design concept relies on the application of engineering mechanics to calculate stresses, strains and deformations in the pavement structure induced by the vehicle loads. The empirical part of the concept is based on laboratory developed performance models that are calibrated with the observed distresses in the in-service pavements with known structural properties, traffic loadings, and performances. These models in the MEPDG were calibrated using a national database of pavement performance data (Long Term Pavement Performance, LTPP) and will provide design solution for pavements with a national average performance. In order to improve the performance prediction of the models and the efficiency of the design for a given state, it is necessary to calibrate it to local conditions by taking into consideration locally available materials, traffic information and the environmental conditions. The objective of this study was to calibrate the MEPDG flexible pavement performance models to local conditions of Northeastern region of United States. To achieve this, seventeen pavement sections were selected for the calibration process and the relevant data (structural, traffic, climatic and pavement performance) was obtained from the LTPP database. MEPDG software (Version 1.1) simulation runs were made using the nationally calibrated coefficients and the MEPDG predicted distresses were compared with the LTPP measured distresses (rutting, alligator and longitudinal cracking, thermal cracking and IRI). The predicted distresses showed fair agreement with the measured distresses but still significant differences were found. The difference between the measured and the predicted distresses were minimized through recalibration of the MEPDG distress models. For the permanent deformation models of each layer, a simple linear regression with no intercept was performed and a new set of model coefficients (ßr1, ßGB, and ßSG) for asphalt concrete, granular base and subgrade layer models were calculated. The calibration of alligator (bottom-up fatigue cracking) and longitudinal (topdown fatigue cracking) was done by deriving the appropriate model coefficients (C1, C2, and C4) since the fatigue damage is given in MEDPG software output. Thermal cracking model was not calibrated since the measured transverse cracking data in the LTPP database did not increase with time, as expected to increase with time. The calibration of IRI model was done by computing the model coefficients (C1, C2, C3, and C4) based on other distresses (rutting, total fatigue cracking, and transverse cracking) by performing a simple linear regression.