Design of Modern Highrise Reinforced Concrete Structures

Design of Modern Highrise Reinforced Concrete Structures PDF Author: Hiroyuki Aoyama
Publisher: World Scientific
ISBN: 1860942393
Category : Technology & Engineering
Languages : en
Pages : 462

Get Book Here

Book Description
This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis.

Design of Modern Highrise Reinforced Concrete Structures

Design of Modern Highrise Reinforced Concrete Structures PDF Author: Hiroyuki Aoyama
Publisher: World Scientific
ISBN: 1860942393
Category : Technology & Engineering
Languages : en
Pages : 462

Get Book Here

Book Description
This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis.

Design Of Modern Highrise Reinforced Concrete Structures

Design Of Modern Highrise Reinforced Concrete Structures PDF Author: Hiroyuki Aoyama
Publisher: World Scientific
ISBN: 1783261641
Category : Technology & Engineering
Languages : en
Pages : 462

Get Book Here

Book Description
This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis.

Reinforced Concrete Design

Reinforced Concrete Design PDF Author: Svetlana Brzev
Publisher:
ISBN: 9781256873846
Category : Technology & Engineering
Languages : en
Pages : 966

Get Book Here

Book Description
Reinforced Concrete Design: A Practical Approach, 2E is the only Canadian textbook which covers the design of reinforced concrete structural members in accordance with the CSA Standard A23.3-04 Design of Concrete Structures, including its 2005, 2007, and 2009 amendments, and the National Building Code of Canada 2010. Reinforced Concrete Design: A Practical Approach covers key topics for curriculum of undergraduate reinforced concrete design courses, and it is a useful learning resource for the students and a practical reference for design engineers. Since its original release in 2005 the book has been well received by readers from Canadian universities, colleges, and design offices. The authors have been commended for a simple and practical approach to the subject by students and course instructors. The book contains numerous design examples solved in a step-by-step format. The second edition is going to be available exclusively in hard cover version, and colours have been used to embellish the content and illustrations. This edition contains a new chapter on the design of two-way slabs and numerous revisions of the original manuscript. Design of two-way slabs is a challenging topic for engineering students and young engineers. The authors have made an effort to give a practical design perspective to this topic, and have focused on analysis and design approaches that are widely used in structural engineering practice. The topics include design of two-way slabs for flexure, shear, and deflection control. Comprehensive revisions were made to Chapter 4 to reflect the changes contained in the 2009 amendment to CSA A23.3-04. Chapters 6 and 7 have been revised to correct an oversight related to the transverse reinforcement spacing requirements in the previous edition of the book. Chapter 8 includes a new design example on slender columns and a few additional problems. Several errors and omissions (both text and illustrations) have also been corrected. More than 300 pages of the original book have been revised in this edition. Several supplements are included on the book web site. Readers will get time-limited access to the new column design software BPA COLUMN, which can generate column interaction diagrams for rectangular and cicrcular columns of variable dimensions and reinforcement amount. Additional supplements include spreadsheets related to foundation design and column load take down, and a few Power Point presentations showcasing reinforced concrete structures under construction and in completed form. Instructors will have an access to additional web site, which contains electronic version of the Instructor's Solution Manual with complete solutions to the end-of-chapter problems, and Power Point presentations containing all illustrations from the book. The book is a collaborative effort between an academic and a practising engineer and reflects their unique perspectives on the subject. Svetlana Brzev, Ph.D., P.Eng. is a faculty at the Civil Engineering Department of the British Columbia Institute of Technology, Burnaby, BC. She has over 25 years of combined teaching, research, and consulting experience related to structural design and rehabilitation of concrete and masonry structures, including buildings, municipal, and industrial facilities. John Pao, MEng, PEng, Struct.Eng, is the President of Bogdonov Pao Associates Ltd. of Vancouver, BC, and BPA Group of Companies with offices in Seattle and Los Angeles. Mr. Pao has extensive consulting experience related to design of reinforced concrete buildings, including high-rise residential and office buildings, shopping centers, parking garages, and institutional buildings.

Design of Prestressed Concrete

Design of Prestressed Concrete PDF Author: Nilson
Publisher: Wiley
ISBN: 9780471830733
Category :
Languages : en
Pages :

Get Book Here

Book Description


Building for the Future: Durable, Sustainable, Resilient

Building for the Future: Durable, Sustainable, Resilient PDF Author: Alper Ilki
Publisher: Springer Nature
ISBN: 3031325192
Category : Technology & Engineering
Languages : en
Pages : 1969

Get Book Here

Book Description
This book presents the proceedings of the fib Symposium “Building for the future: Durable, Sustainable, Resilient”, held in Istanbul, Turkey, on 5–7 June 2023. The book covers topics such as concrete and innovative materials, structural performance and design, construction methods and management, and outstanding structures. fib (The International Federation for Structural Concrete) is a not-for-profit association whose mission is to develop at an international level the study of scientific and practical matters capable of advancing the technical, economic, aesthetic, and environmental performance of concrete construction.

Outrigger Design for High-Rise Buildings

Outrigger Design for High-Rise Buildings PDF Author: Hi Sun Choi
Publisher: Routledge
ISBN: 1317341716
Category : Technology & Engineering
Languages : en
Pages : 229

Get Book Here

Book Description
Outrigger systems are rigid horizontal structures designed to improve a building’s stability and strength by connecting the building core or spine to distant columns, much in the way an outrigger can prevent a canoe from overturning. Outriggers have been used in tall, narrow buildings for nearly 500 years, but the basic design principle dates back centuries. In the 1980s, as buildings grew taller and more ambitious, outrigger systems eclipsed tubular frames as the most popular structural approach for supertall buildings. Designers embraced properly proportioned core-and-outrigger schemes as a method to offer far more perimeter flexibility and openness for tall buildings than the perimeter moment or braced frames and bundled tubes that preceded them. However, the outrigger system is not listed as a seismic lateral load-resisting system in any code, and design parameters are not available, despite the increasingly frequent use of the concept. The Council on Tall Buildings and Urban Habitat’s Outrigger Working Group has addressed the pressing need for design guidelines for outrigger systems with this guide, a comprehensive overview of the use of outriggers in skyscrapers. This guide offers detailed recommendations for analysis of outriggers within the lateral load-resisting systems of tall buildings, for recognizing and addressing effects on building behavior and for practical design solutions. It also highlights concerns specific to the outrigger structural system such as differential column shortening and construction sequence impacts. Several project examples are explored in depth, illustrating the role of outrigger systems in tall building designs and providing ideas for future projects. The guide details the impact of outrigger systems on tall building designs, and demonstrates ways in which the technology is continuously advancing to improve the efficiency and stability of tall buildings around the world.

Design of Buildings for Wind

Design of Buildings for Wind PDF Author: Emil Simiu
Publisher: John Wiley & Sons
ISBN: 1118077377
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
ASCE 7 is the US standard for identifying minimum design loads for buildings and other structures. ASCE 7 covers many load types, of which wind is one. The purpose of this book is to provide structural and architectural engineers with the practical state-of-the-art knowledge and tools needed for designing and retrofitting buildings for wind loads. The book will also cover wind-induced loss estimation. This new edition include a guide to the thoroughly revised, 2010 version of the ASCE 7 Standard provisions for wind loads; incorporate major advances achieved in recent years in the design of tall buildings for wind; present material on retrofitting and loss estimation; and improve the presentation of the material to increase its usefulness to structural engineers. Key features: New focus on tall buildings helps make the analysis and design guidance easier and less complex. Covers the new simplified design methods of ASCE 7-10, guiding designers to clearly understand the spirit and letter of the provisions and use the design methods with confidence and ease. Includes new coverage of retrofitting for wind load resistance and loss estimation from hurricane winds. Thoroughly revised and updated to conform with current practice and research.

Fundamentals of Earthquake Engineering

Fundamentals of Earthquake Engineering PDF Author: Amr S. Elnashai
Publisher: John Wiley & Sons
ISBN: 1118700465
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.

NBS Building Science Series

NBS Building Science Series PDF Author:
Publisher:
ISBN:
Category : Building
Languages : en
Pages : 68

Get Book Here

Book Description


Design of Concrete Structures

Design of Concrete Structures PDF Author: Christian Meyer
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 602

Get Book Here

Book Description
This introduction to the principles of concrete mechanics and design focuses on the fundamentals - from very basic, elementary to the very complicated concepts and features an easy-to-follow yet thorough step-by-step design methodology. *emphasizes basic principles of the mechanics aspects of concrete design and avoids explanations of the detail requirements which can be found in the ACI Code and Commentary. *surveys modern design philosophies and features an amply illustrated tour of the world of concrete. *carefully lays out the various design procedures step-by-step - for flexural design, shear design, column design, etc, prepares and encourages students to program procedures for computer solution. Instructors, at their own discretion, can suggest follow-up coding assignment. *goes beyond the traditional description of materials to provide substantive coverage of concrete, current concrete technology, and the durability of materials - especially since many engineers will find themselves repairing, rehabilitating, and strengthening existing structures, rather than designing new ones. *explores the interrelationship between design and analysis - a typical problem area for students, especially in relation to statically indeterminate structures, reviews some structural analysis methods for continuous beams and frames, especially those methods that designers will find useful for checking purposes - e.g., moment distribution, explains how the behavior of structures can be controlled through design decisions. *includes sections on basic plate theory and yield line theory as supplements to the common design procedures of the ACI Code. *contains important optional topics that students can master through self-study after understanding the basics such as torsion, slab design, footings, and retaining walls. *includes many easy-to-follow examples worked out in great detail. *contains a large number of illustrations. *features very carefully designed problem sets that require students to think and appreciate various physical aspects of what they are doing. *contains a comprehensive glossary of terms common in concrete engineering and the construction industry. Definitions are based largely on The Cement and Concrete Terminology Report of ACI Committee 116.