Design, Fabrication and Characterisation of Free-standing Thick-film Piezoelectric Cantilevers For Energy Harvesting

Design, Fabrication and Characterisation of Free-standing Thick-film Piezoelectric Cantilevers For Energy Harvesting PDF Author: Swee Leong Kok
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Free-Standing Thick-Film Piezoelectric Cantilevers -Energy Harvesting

Free-Standing Thick-Film Piezoelectric Cantilevers -Energy Harvesting PDF Author: Swee-Leong Kok
Publisher: LAP Lambert Academic Publishing
ISBN: 9783844389692
Category :
Languages : en
Pages : 252

Get Book Here

Book Description
Vibration-based energy harvesting is one of the attractive solutions for powering autonomous microsystems, due to the fact that, vibration sources are ubiquitous in the ambient environment. Basically, the vibration-to-electricity conversion mechanism can be implemented by piezoelectric, electromagnetic, electrostatic, and magnetostrictive transductions. In this book, piezoelectric transduction is investigated due to its high electrical output density, compatibility with conventional thick-film and thin-film fabrication technologies and ease of integration in silicon integrated circuits. A three dimensional thick-film structure in the form of a free-standing cantilever incorporated with piezoelectric materials is proposed in this work. The advantages of this structure include minimising the movement constraints on the piezoelectric, thereby maximising the electrical output and offering the ability for integration with other microelectronic devices.

Printed Films

Printed Films PDF Author: Maria Prudenziati
Publisher: Elsevier
ISBN: 0857096214
Category : Technology & Engineering
Languages : en
Pages : 609

Get Book Here

Book Description
Whilst printed films are currently used in varied devices across a wide range of fields, research into their development and properties is increasingly uncovering even greater potential. Printed films provides comprehensive coverage of the most significant recent developments in printed films and their applications.Materials and properties of printed films are the focus of part one, beginning with a review of the concepts, technologies and materials involved in their production and use. Printed films as electrical components and silicon metallization for solar cells are discussed, as are conduction mechanisms in printed film resistors, and thick films in packaging and microelectronics. Part two goes on to review the varied applications of printed films in devices. Printed resistive sensors are considered, as is the role of printed films in capacitive, piezoelectric and pyroelectric sensors, mechanical micro-systems and gas sensors. The applications of printed films in biosensors, actuators, heater elements, varistors and polymer solar cells are then explored, followed by a review of screen printing for the fabrication of solid oxide fuel cells and laser printed micro- and meso-scale power generating devices.With its distinguished editors and international team of expert contributors, Printed films is a key text for anyone working in such fields as microelectronics, fuel cell and sensor technology in both industry and academia. - Provides a comprehensive analysis of the most significant recent developments in printed films and their applications - Reviews the concepts, properties, technologies and materials involved in the production and use of printed films - Analyses the varied applications of printed films in devices, including printed restrictive sensors for physical quantities and printed thick film mechanical micro-systems (MEMS), among others

Flexible Piezoelectric Energy Harvesters and Sensors

Flexible Piezoelectric Energy Harvesters and Sensors PDF Author: Bin Yang
Publisher: John Wiley & Sons
ISBN: 3527833013
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Flexible Piezoelectric Energy Harvesters and Sensors A systematic and complete discussion of the latest progress in flexible piezoelectric energy harvesting and sensing technologies In Flexible Piezoelectric Energy Harvesters and Sensors, a team of distinguished researchers delivers a comprehensive exploration of the design methods, working mechanisms, microfabrication processes, and applications of flexible energy harvesters for wearable and implantable devices. The book discusses the monitoring of normal force, shear force, strain, and displacement in flexible sensors, as well as relevant artificial intelligence algorithms. Readers will also find an overview of design and research challenges facing professionals in the field, as well as a variety of perspectives on flexible energy harvesters and sensors. With an extensive focus on the use of flexible piezoelectric material technologies for medical applications, Flexible Piezoelectric Energy Harvesters and Sensors also includes: A thorough introduction to the working principles of piezoelectric devices, including discussions of flexible PEH and piezoelectric sensors Comprehensive treatments of the design of flexible piezoelectric energy harvesters, including the challenges associated with their structural design Fulsome explanations of the fabrication of flexible piezoelectric energy harvesters, including piezoelectric ceramic thin and think films In-depth treatments of cantilever piezoelectric energy harvesters, including optimized cantilever, bimorph, and optimized bimorph PEH Perfect for materials scientists, electronics engineers, and solid-state physicists, Flexible Piezoelectric Energy Harvesters and Sensors will also earn a place in the libraries of sensor developers, and surface physicists.

Design, Fabrication and Test on Piezoelectric Energy Harvesters with Non-traditional Geometries

Design, Fabrication and Test on Piezoelectric Energy Harvesters with Non-traditional Geometries PDF Author: Lei Wang
Publisher:
ISBN:
Category : Energy harvesting
Languages : en
Pages : 89

Get Book Here

Book Description
Unimorph piezoelectric cantilevers with non-traditional surface geometries were investigated by theoretical calculations, finite element models, and sample tests. The study shows the average output voltage for piezoelectric cantilevers with same length and surface area is unique, no matter what the surface shapes are. Optimization on cross section was also conducted theoretically, which indicated a trapezoidal-shaped unimorph cross section can maximize the average output voltage. Several dome-shape piezoelectric devices were fabricated using PZT-epoxy sol-gel method and deposition from spin coating techniques. The surface area was examined by AFM and SEM images. Parameters like piezoelectric coefficients d31, d33 and capacitance were investigated; their trends with increasing polling voltages were also plotted and analyzed. A novel approach to ribbon-shaped PZT device on a flexible substrate was advanced at last.

Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting PDF Author: Alper Erturk
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377

Get Book Here

Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Fabrication of Thin Film Lead Zirconate Titanate Cantilevers for Energy Harvesting Applications

Fabrication of Thin Film Lead Zirconate Titanate Cantilevers for Energy Harvesting Applications PDF Author: Wardia Mechtaly Debray
Publisher:
ISBN:
Category : Energy harvesting
Languages : en
Pages : 136

Get Book Here

Book Description
Thin films of ferroelectric relaxor solid solutions, Pb(Zr x Ti 1-x )O3 -Pb(Zn1/3 ,Nb2/3 )O3 or PZT-PZN, have been fabricated using the sol-gel process on non-conducting ZrO2 surfaces for energy harvesting applications. The sol-gel process used to fabricate these films is a modification of the inverted mixing order (IMO) process that has been previously developed for PZT.1 The relaxor thin films, also prepared using the sol-gel process, are susceptible to formation of the undesired non-ferroelectric pyrochlore phase.2 We adopted a strategy based on three key parameters to obtain single-phase perovskite thin films. The first is the use of a PbTiO3 (PT) seed layer, which has been shown to be effective for perovskite phase nucleation.3 The second, is the use of excess lead in the starting solution, and the third is the use of a high ramp rate anneal for film crystallization. It is shown that by using these three process parameters one can eliminate the undesired pyrochlore phase. The ability to obtain single phase PZT-PZN perovskite films depends on balancing two competing processes. The first is lead loss during film annealing, which tends to favor nucleation of the pyrochlore phase.4 The second is the nucleation rate of the perovskite phase, which requires the presence of excess lead. The fast-ramp rate anneal increases the perovskite phase nucleation before significant lead is lost from the film. With this scheme we were able to eliminate the pyrocholore phase. The film morphology, as seen in SEM micrographs, shows the benefit of the PT seed layer. Electrical characterization of these films was performed using inter-digitated electrode structures. The results indicate a very strong dependence of the electrical properties on film thickness. The quality of the capacitance "butterfly" loops improved significantly with increasing film thickness. The dielectric constant was extracted from interdigitated electrode structures for three thickness values (270, 540 and 810 nm including a PT layer for nucleation purposes) and was found to be 205, 470 and 803, and the capacitance density per effective area were 167, 470 and 655 pF/mm2 . The reason for the increase in the capacitance is likely due to increasing grain size with film thickness. The coercive voltage for the three thicknesses was found to be ±10V. We used the interdigitated electrode structure in order to operate the cantilever in d33 mode (d33 generates 2 times higher device performance than that of the d31).5

Energy Harvesting Technologies

Energy Harvesting Technologies PDF Author: Shashank Priya
Publisher: Springer Science & Business Media
ISBN: 038776464X
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Ferroelectrics

Ferroelectrics PDF Author: Mickaël Lallart
Publisher: BoD – Books on Demand
ISBN: 9533074566
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on the application of ferroelectric devices to innovative systems. In particular, the use of these materials as varying capacitors, gyroscope, acoustics sensors and actuators, microgenerators and memory devices will be exposed, providing an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric devices.

Piezoelectric Ceramics

Piezoelectric Ceramics PDF Author: Bernard Jaffe
Publisher: Elsevier
ISBN: 0323155685
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
Piezoelectric Ceramics focuses on the relationship between piezoelectricity and ferroelectricity as they apply to ceramics, taking into consideration the properties of materials that are being used and possibly be used in the industries. Composed of 12 chapters, the book starts by tracing the history of piezoelectricity and how this affects ceramics. The different measurement techniques are discussed, including dielectric, ferroelectric, and piezoelectric measurements. The book proceeds by discussing Perovskite structure and barium titanate. Covered areas include electric field, piezoelectric properties, particle size effect, and dielectric strength. The properties, compositions, and reactions of various perovskites are discussed. Numerical analyses are presented in this regard. The book also offers interpretations of the experiments conducted. The discussions end with the processes involved in the manufacture and applications of piezoelectric ceramics. Concerns in manufacturing include calcination, grinding, mixing, electroding, firing, and quality control. Piezolectric ceramics are applied in air transducers, instrument transducers, delay line transducers, underwater sound ultrasonic power, and wave filters. The book is important for readers interested in doing research on ceramics.