Design Considerations for Plasma Accelerators Driven by Lasers Or Particle Beams

Design Considerations for Plasma Accelerators Driven by Lasers Or Particle Beams PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Design Considerations for Plasma Accelerators Driven by Lasers Or Particle Beams

Design Considerations for Plasma Accelerators Driven by Lasers Or Particle Beams PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Plasma Wake Excitation by Lasers Or Particle Beams

Plasma Wake Excitation by Lasers Or Particle Beams PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the regimes of operation (linear and nonlinear wave). Limitations owing to driver emittance are also discussed.

Applications of Laser-Driven Particle Acceleration

Applications of Laser-Driven Particle Acceleration PDF Author: Paul Bolton
Publisher: CRC Press
ISBN: 042981710X
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Jörg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universität München in München, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts

Challenges and Goals for Accelerators in the XXI Century

Challenges and Goals for Accelerators in the XXI Century PDF Author: Oliver Brning
Publisher: World Scientific
ISBN: 9814436402
Category : Science
Languages : en
Pages : 855

Get Book Here

Book Description
"The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades."--Provided by publisher.

Laser-Driven Accelerators, Radiations, and Their Applications

Laser-Driven Accelerators, Radiations, and Their Applications PDF Author: Hyung Taek Kim
Publisher: Mdpi AG
ISBN: 9783036542331
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Particle accelerators and radiation based on radio-frequency (RF) cavities have significantly contributed to the advancement of science and technology in the most recent century. However, the rising costs and scales for building cutting-edge accelerators act as barriers to accessing these particle and radiation sources. Since the introduction of chirped pulse amplification technology in the 1990s, short-pulse, high-power lasers have enabled the realization of laser-driven accelerations and radiation sources. Laser-driven accelerators and radiation sources could be a viable alternative to providing compact and cost-effective particle and photon sources. An accelerating field in a plasma, driven by intense laser pulses, is typically several orders of magnitude greater than that of RF accelerators, while controlling the plasma media and intense laser pulses is highly demanding. Therefore, numerous efforts have been directed toward developing laser-driven high-quality particle beams and radiation sources with the goal of paving the way for these novel sources to be used in a variety of applications. This Special Issue covers the latest developments in laser-based ion and electron accelerators; laser-plasma radiation sources; advanced targetry and diagnostic systems for laser-driven particle accelerators; particle beam transport solutions for multidisciplinary applications; ionizing radiation dose map determination; and new approaches to laser-plasma nuclear fusion using high-intensity, short laser pulses.

Laser-Plasma Interactions

Laser-Plasma Interactions PDF Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Laser Plasma Accelerators for Charged Particles

Laser Plasma Accelerators for Charged Particles PDF Author: Kay-Uwe Amthor
Publisher:
ISBN: 9783833470875
Category :
Languages : en
Pages : 120

Get Book Here

Book Description
In order to accelerate charged particles, electric fields have to be applied. The highest electric fields reached in radio frequency particle accelerators are of the order of 10 MV/m. This field poses an upper limit for conventional accelerator technology because for higher fields the electrodes will be ionized. What if this limit is circumvented and the electric field is build up in an already ionized medium? The idea of using laser generated plasmas for particle acceleration has been conceived about 25 years ago, and is currently a very active and fascinating subject in theoretical and experimental physics. In a plasma the maximum attainable electric fields are of the order of 1000 GV/m, five orders of magnitude larger than for RF accelerators. The dimensions to generate high energy particles shrink from kilometers to millimeters. Therefore, laser plasma acceleration may become an attractive future option for particle acceleration. In this work experimental contributions to the generation of particle beams from laser plasmas are presented. Electron beams with improved parameters, and the first quasi monoenergetic proton beams have been generated and investigated utilizing a compact table top laser system at the Jena laser facility. These experiments are described and discussed in this book.

Investigation of Staged Laser-Plasma Acceleration

Investigation of Staged Laser-Plasma Acceleration PDF Author: Satomi Shiraishi
Publisher: Springer
ISBN: 3319085697
Category : Science
Languages : en
Pages : 133

Get Book Here

Book Description
This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators. Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold. Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated. These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.

Laser-Plasma Acceleration

Laser-Plasma Acceleration PDF Author: Società italiana di fisica
Publisher: IOS Press
ISBN: 1614991294
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The objective of the school was to establish a common knowledge base for the future laser-plasma accelerator community. These published proceedings aim to provide a wider community with a reference covering a wide range of topics, knowledge of which will be necessary to future research on laser-plasma acceleration. The book also provides references to selected existing literature for further reading.

Design Considerations for a Density-Channel-Guided Laser Wake-Field Accelerator

Design Considerations for a Density-Channel-Guided Laser Wake-Field Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
A self-modulated laser wake-field accelerator configuration in which the laser pulse is optically guided by a plasma density channel is considered. Preliminary experiments on the generation of a plasma channel by a slow capillary discharge are described. It is shown that homogeneous channels with length L sub channel” lambda p can be produced, where lambda sub p is the plasma wavelength. Key issues are addressed, including phase detuning between the accelerated electron bunch and the wake field, beam-plasma and laser-plasma instabilities, and the effect of density variations that might occur over the length of the plasma channel. Numerical simulations, using present experimental parameters, show accelerating gradients in excess of 50 GV/m.