Deep Learning for Computer Architects

Deep Learning for Computer Architects PDF Author: Brandon Reagen
Publisher: Springer Nature
ISBN: 3031017560
Category : Technology & Engineering
Languages : en
Pages : 109

Get Book Here

Book Description
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Deep Learning for Computer Architects

Deep Learning for Computer Architects PDF Author: Brandon Reagen
Publisher: Springer Nature
ISBN: 3031017560
Category : Technology & Engineering
Languages : en
Pages : 109

Get Book Here

Book Description
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks PDF Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254

Get Book Here

Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Towards Ubiquitous Low-power Image Processing Platforms

Towards Ubiquitous Low-power Image Processing Platforms PDF Author: Magnus Jahre
Publisher: Springer Nature
ISBN: 3030535320
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
This book summarizes the key scientific outcomes of the Horizon 2020 research project TULIPP: Towards Ubiquitous Low-power Image Processing Platforms. The main focus lies on the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications. The holistic TULIPP approach is described in the book, which addresses hardware platforms, programming tools and embedded operating systems. Several of the results are available as open-source hardware/software for the community. The results are evaluated with several use cases taken from real-world applications in key domains such as Unmanned Aerial Vehicles (UAVs), robotics, space and medicine. Discusses the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications; Covers the hardware architecture of embedded image processing systems, novel methods, tools and libraries for programming those systems as well as embedded operating systems to manage those systems; Demonstrates results with several challenging applications, such as medical systems, robotics, drones and automotive.

Approximate Circuits

Approximate Circuits PDF Author: Sherief Reda
Publisher: Springer
ISBN: 9783319993218
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides readers with a comprehensive, state-of-the-art overview of approximate computing, enabling the design trade-off of accuracy for achieving better power/performance efficiencies, through the simplification of underlying computing resources. The authors describe in detail various efforts to generate approximate hardware systems, while still providing an overview of support techniques at other computing layers. The book is organized by techniques for various hardware components, from basic building blocks to general circuits and systems.

FPGA Design Automation

FPGA Design Automation PDF Author: Deming Chen
Publisher: Now Publishers Inc
ISBN: 1933019387
Category : Digital electronics
Languages : en
Pages : 150

Get Book Here

Book Description
FPGA Design Automation: A Survey is an up-to-date comprehensive survey/tutorial of FPGA design automation, with an emphasis on the recent developments within the past 5 to 10 years. The focus is on the theory and techniques that have been, or most likely will be, reduced to practice. It covers all major steps in FPGA design flow: routing and placement, circuit clustering, technology mapping and architecture-specific optimization, physical synthesis, RT-level and behavior-level synthesis, and power optimization. FPGA Design Automation: A Survey can be used as both a guide for beginners who are embarking on research in this relatively young yet exciting area, and a useful reference for established researchers in this field.

Optimization for Machine Learning

Optimization for Machine Learning PDF Author: Suvrit Sra
Publisher: MIT Press
ISBN: 026201646X
Category : Computers
Languages : en
Pages : 509

Get Book Here

Book Description
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Deep Learning Approaches for Spoken and Natural Language Processing

Deep Learning Approaches for Spoken and Natural Language Processing PDF Author: Virender Kadyan
Publisher:
ISBN: 9783030797799
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays PDF Author: Jonathan Greene
Publisher:
ISBN: 9781450343541
Category :
Languages : en
Pages :

Get Book Here

Book Description
FPGA '17: The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays Feb 22, 2017-Feb 24, 2017 Monterey, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.

Event-Based Neuromorphic Systems

Event-Based Neuromorphic Systems PDF Author: Shih-Chii Liu
Publisher: John Wiley & Sons
ISBN: 0470018496
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description
Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.

FPGA Implementations of Neural Networks

FPGA Implementations of Neural Networks PDF Author: Amos R. Omondi
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365

Get Book Here

Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.