Author: Oliver Schabenberger
Publisher: CRC Press
ISBN: 020349198X
Category : Mathematics
Languages : en
Pages : 584
Book Description
Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.
Statistical Methods for Spatial Data Analysis
Author: Oliver Schabenberger
Publisher: CRC Press
ISBN: 020349198X
Category : Mathematics
Languages : en
Pages : 584
Book Description
Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.
Publisher: CRC Press
ISBN: 020349198X
Category : Mathematics
Languages : en
Pages : 584
Book Description
Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.
Developments in Numerical Ecology
Author: Pierre Legendre
Publisher: Springer Science & Business Media
ISBN: 3642708803
Category : Science
Languages : en
Pages : 583
Book Description
From earlier ecological studies it has become apparent that simple univariate or bivariate statistics are often inappropriate, and that multivariate statistical analyses must be applied. Despite several difficulties arising from the application of multivariate methods, community ecology has acquired a mathematical framework, with three consequences: it can develop as an exact science; it can be applied operationally as a computer-assisted science to the solution of environmental problems; and it can exchange information with other disciplines using the language of mathematics. This book comprises the invited lectures, as well as working group reports, on the NATO workshop held in Roscoff (France) to improve the applicability of this new method numerical ecology to specific ecological problems.
Publisher: Springer Science & Business Media
ISBN: 3642708803
Category : Science
Languages : en
Pages : 583
Book Description
From earlier ecological studies it has become apparent that simple univariate or bivariate statistics are often inappropriate, and that multivariate statistical analyses must be applied. Despite several difficulties arising from the application of multivariate methods, community ecology has acquired a mathematical framework, with three consequences: it can develop as an exact science; it can be applied operationally as a computer-assisted science to the solution of environmental problems; and it can exchange information with other disciplines using the language of mathematics. This book comprises the invited lectures, as well as working group reports, on the NATO workshop held in Roscoff (France) to improve the applicability of this new method numerical ecology to specific ecological problems.
Applied Multivariate Statistical Analysis
Author: Wolfgang Karl Härdle
Publisher: Springer Nature
ISBN: 3031638336
Category :
Languages : en
Pages : 611
Book Description
Publisher: Springer Nature
ISBN: 3031638336
Category :
Languages : en
Pages : 611
Book Description
Business Enterprise in Its Social Setting
Author: Arthur Harrison Cole
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other Applications
Author: Wayne B. Nelson
Publisher: SIAM
ISBN: 0898715229
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
Survival data consist of a single event for each population unit, namely, end of life, which is modeled with a life distribution. However, many applications involve repeated-events data, where a unit may accumulate numerous events over time. This applied book provides practitioners with basic nonparametric methods for such data.
Publisher: SIAM
ISBN: 0898715229
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
Survival data consist of a single event for each population unit, namely, end of life, which is modeled with a life distribution. However, many applications involve repeated-events data, where a unit may accumulate numerous events over time. This applied book provides practitioners with basic nonparametric methods for such data.
bookdown
Author: Yihui Xie
Publisher: CRC Press
ISBN: 1351792601
Category : Mathematics
Languages : en
Pages : 140
Book Description
bookdown: Authoring Books and Technical Documents with R Markdown presents a much easier way to write books and technical publications than traditional tools such as LaTeX and Word. The bookdown package inherits the simplicity of syntax and flexibility for data analysis from R Markdown, and extends R Markdown for technical writing, so that you can make better use of document elements such as figures, tables, equations, theorems, citations, and references. Similar to LaTeX, you can number and cross-reference these elements with bookdown. Your document can even include live examples so readers can interact with them while reading the book. The book can be rendered to multiple output formats, including LaTeX/PDF, HTML, EPUB, and Word, thus making it easy to put your documents online. The style and theme of these output formats can be customized. We used books and R primarily for examples in this book, but bookdown is not only for books or R. Most features introduced in this book also apply to other types of publications: journal papers, reports, dissertations, course handouts, study notes, and even novels. You do not have to use R, either. Other choices of computing languages include Python, C, C++, SQL, Bash, Stan, JavaScript, and so on, although R is best supported. You can also leave out computing, for example, to write a fiction. This book itself is an example of publishing with bookdown and R Markdown, and its source is fully available on GitHub.
Publisher: CRC Press
ISBN: 1351792601
Category : Mathematics
Languages : en
Pages : 140
Book Description
bookdown: Authoring Books and Technical Documents with R Markdown presents a much easier way to write books and technical publications than traditional tools such as LaTeX and Word. The bookdown package inherits the simplicity of syntax and flexibility for data analysis from R Markdown, and extends R Markdown for technical writing, so that you can make better use of document elements such as figures, tables, equations, theorems, citations, and references. Similar to LaTeX, you can number and cross-reference these elements with bookdown. Your document can even include live examples so readers can interact with them while reading the book. The book can be rendered to multiple output formats, including LaTeX/PDF, HTML, EPUB, and Word, thus making it easy to put your documents online. The style and theme of these output formats can be customized. We used books and R primarily for examples in this book, but bookdown is not only for books or R. Most features introduced in this book also apply to other types of publications: journal papers, reports, dissertations, course handouts, study notes, and even novels. You do not have to use R, either. Other choices of computing languages include Python, C, C++, SQL, Bash, Stan, JavaScript, and so on, although R is best supported. You can also leave out computing, for example, to write a fiction. This book itself is an example of publishing with bookdown and R Markdown, and its source is fully available on GitHub.
Introduction to Psychometric Theory
Author: Tenko Raykov
Publisher: Routledge
ISBN: 1136900020
Category : Psychology
Languages : en
Pages : 602
Book Description
This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.
Publisher: Routledge
ISBN: 1136900020
Category : Psychology
Languages : en
Pages : 602
Book Description
This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.
Structural Equation Modeling
Author: Jichuan Wang
Publisher: John Wiley & Sons
ISBN: 1119422728
Category : Mathematics
Languages : en
Pages : 662
Book Description
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
Publisher: John Wiley & Sons
ISBN: 1119422728
Category : Mathematics
Languages : en
Pages : 662
Book Description
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
OpenIntro Statistics
Author: David Diez
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Application of Structural Equation Modeling in Educational Research and Practice
Author: Myint Swe Khine
Publisher: Springer Science & Business Media
ISBN: 9462093326
Category : Education
Languages : en
Pages : 284
Book Description
Structural Equation Modeling (SEM) is a statistical approach to testing hypothesis about the relationships among observed and latent variables. The use of SEM in research has increased in psychology, sociology, and economics in recent years. In particular educational researchers try to obtain the complete image of the process of education through the measurement of personality differences, learning environment, motivation levels and host of other variables that affect the teaching and learning process. With the use of survey instruments and interviews with students, teachers and other stakeholders as a lens, educators can assess and gain valuable information about the social ecology of the classrooms that could help in improving the instructional approach, classroom management and the learning organizations. A considerable number of research have been conducted to identify the factors and interactions between students’ characteristics, personal preferences, affective traits, study skills, and various other factors that could help in better educational performance. In recent years, educational researchers use Structural Equation Modeling (SEM) as a statistical technique to explore the complex and dynamic nature of interactions in educational research and practice. SEM is becoming a powerful analytical tool and making methodological advances in multivariate analysis. This book presents the collective works on concepts, methodologies and applications of SEM in educational research and practice. The anthology of current research described in this book will be a valuable resource for the next generation educational practitioners.
Publisher: Springer Science & Business Media
ISBN: 9462093326
Category : Education
Languages : en
Pages : 284
Book Description
Structural Equation Modeling (SEM) is a statistical approach to testing hypothesis about the relationships among observed and latent variables. The use of SEM in research has increased in psychology, sociology, and economics in recent years. In particular educational researchers try to obtain the complete image of the process of education through the measurement of personality differences, learning environment, motivation levels and host of other variables that affect the teaching and learning process. With the use of survey instruments and interviews with students, teachers and other stakeholders as a lens, educators can assess and gain valuable information about the social ecology of the classrooms that could help in improving the instructional approach, classroom management and the learning organizations. A considerable number of research have been conducted to identify the factors and interactions between students’ characteristics, personal preferences, affective traits, study skills, and various other factors that could help in better educational performance. In recent years, educational researchers use Structural Equation Modeling (SEM) as a statistical technique to explore the complex and dynamic nature of interactions in educational research and practice. SEM is becoming a powerful analytical tool and making methodological advances in multivariate analysis. This book presents the collective works on concepts, methodologies and applications of SEM in educational research and practice. The anthology of current research described in this book will be a valuable resource for the next generation educational practitioners.