Author: Richard E. Tressler
Publisher: Springer Science & Business Media
ISBN: 1461568021
Category : Technology & Engineering
Languages : en
Pages : 742
Book Description
This volume "Deformation of Ceramic Materials II" constitutes the proceedings of an international symposium held at The Pennsyl vania State University, University Park, PA on July 20, 21, and 22, 1983. It includes studies of semiconductors and minerals which are closely related to ceramic materials. The initial conference on this topic was held in 1974 at Penn State and the proceedings were published in the volume entitled "Deformation of Ceramic Materials." This conference emphasized the deformation behavior of crystals and po1ycrysta11ine and polyphase ceramics with internationally recognized authorities as keynote lecturers on the major subtopics. Several papers dealing with cavity nucleation and creep crack growth represent a major new research thrust in ceramics since the first conference. This collection of papers represents the state-of-the art of our understanding of the plastic deformation behavior of ceramics and the crystals of which they are composed. We are grateful for the suggestions of our International Advisory Committee .in recommending experts in their respective countries to participate. We are particularly grateful that the organizers of the previous Dislocation-Point Defect Interaction Workshops agreed to participate in the Penn State Symposium as an alternative at the suggestion of Prof. A. H. Heuer. We acknowledge the financial support of the National Science Foundation for this conference.
Deformation of Ceramic Materials II
Author: Richard E. Tressler
Publisher: Springer Science & Business Media
ISBN: 1461568021
Category : Technology & Engineering
Languages : en
Pages : 742
Book Description
This volume "Deformation of Ceramic Materials II" constitutes the proceedings of an international symposium held at The Pennsyl vania State University, University Park, PA on July 20, 21, and 22, 1983. It includes studies of semiconductors and minerals which are closely related to ceramic materials. The initial conference on this topic was held in 1974 at Penn State and the proceedings were published in the volume entitled "Deformation of Ceramic Materials." This conference emphasized the deformation behavior of crystals and po1ycrysta11ine and polyphase ceramics with internationally recognized authorities as keynote lecturers on the major subtopics. Several papers dealing with cavity nucleation and creep crack growth represent a major new research thrust in ceramics since the first conference. This collection of papers represents the state-of-the art of our understanding of the plastic deformation behavior of ceramics and the crystals of which they are composed. We are grateful for the suggestions of our International Advisory Committee .in recommending experts in their respective countries to participate. We are particularly grateful that the organizers of the previous Dislocation-Point Defect Interaction Workshops agreed to participate in the Penn State Symposium as an alternative at the suggestion of Prof. A. H. Heuer. We acknowledge the financial support of the National Science Foundation for this conference.
Publisher: Springer Science & Business Media
ISBN: 1461568021
Category : Technology & Engineering
Languages : en
Pages : 742
Book Description
This volume "Deformation of Ceramic Materials II" constitutes the proceedings of an international symposium held at The Pennsyl vania State University, University Park, PA on July 20, 21, and 22, 1983. It includes studies of semiconductors and minerals which are closely related to ceramic materials. The initial conference on this topic was held in 1974 at Penn State and the proceedings were published in the volume entitled "Deformation of Ceramic Materials." This conference emphasized the deformation behavior of crystals and po1ycrysta11ine and polyphase ceramics with internationally recognized authorities as keynote lecturers on the major subtopics. Several papers dealing with cavity nucleation and creep crack growth represent a major new research thrust in ceramics since the first conference. This collection of papers represents the state-of-the art of our understanding of the plastic deformation behavior of ceramics and the crystals of which they are composed. We are grateful for the suggestions of our International Advisory Committee .in recommending experts in their respective countries to participate. We are particularly grateful that the organizers of the previous Dislocation-Point Defect Interaction Workshops agreed to participate in the Penn State Symposium as an alternative at the suggestion of Prof. A. H. Heuer. We acknowledge the financial support of the National Science Foundation for this conference.
Plastic Deformation of Ceramics
Author: R.C. Bradt
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Mechanical Properties of Ceramics
Author: John B. Wachtman
Publisher: John Wiley & Sons
ISBN: 9780470451502
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.
Publisher: John Wiley & Sons
ISBN: 9780470451502
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.
Handbook of Ceramics Grinding and Polishing
Author: Ioan D. Marinescu
Publisher: William Andrew
ISBN: 1455778591
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Handbook of Ceramics Grinding and Polishing meets the growing need in manufacturing industries for a clear understanding of the latest techniques in ceramics processing. The properties of ceramics make them very useful as components—they withstand high temperatures and are durable, resistant to wear, chemical degradation, and light. In recent years the use of ceramics has been expanding, with applications in most industry sectors that use machined parts, especially where corrosion-resistance is required, and in high temperature environments. However, they are challenging to produce and their use in high-precision manufacturing often requires adjustments to be made at the micro and nano scale. This book helps ceramics component producers to do cost-effective, highly precise machining. It provides a thorough grounding in the fundamentals of ceramics—their properties and characteristics—and of the abrasive processes used to manipulate their final shape as well as the test procedures vital for success. The second edition has been updated throughout, with the latest developments in technologies, techniques, and materials. The practical nature of the book has also been enhanced; numerous case studies illustrating how manufacturing (machining) problems have been handled are complemented by a highly practical new chapter on the selection and efficient use of machine tools. - Provides readers with experience-based insights into complex and expensive processes, leading to improved quality control, lower failure rates, and cost savings - Covers the fundamentals of ceramics side-by-side with processing issues and machinery selection, making this book an invaluable guide for downstream sectors evaluating the use of ceramics, as well as those involved in the manufacturing of structural ceramics - Numerous case studies from a wide range of applications (automotive, aerospace, electronics, medical devices)
Publisher: William Andrew
ISBN: 1455778591
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Handbook of Ceramics Grinding and Polishing meets the growing need in manufacturing industries for a clear understanding of the latest techniques in ceramics processing. The properties of ceramics make them very useful as components—they withstand high temperatures and are durable, resistant to wear, chemical degradation, and light. In recent years the use of ceramics has been expanding, with applications in most industry sectors that use machined parts, especially where corrosion-resistance is required, and in high temperature environments. However, they are challenging to produce and their use in high-precision manufacturing often requires adjustments to be made at the micro and nano scale. This book helps ceramics component producers to do cost-effective, highly precise machining. It provides a thorough grounding in the fundamentals of ceramics—their properties and characteristics—and of the abrasive processes used to manipulate their final shape as well as the test procedures vital for success. The second edition has been updated throughout, with the latest developments in technologies, techniques, and materials. The practical nature of the book has also been enhanced; numerous case studies illustrating how manufacturing (machining) problems have been handled are complemented by a highly practical new chapter on the selection and efficient use of machine tools. - Provides readers with experience-based insights into complex and expensive processes, leading to improved quality control, lower failure rates, and cost savings - Covers the fundamentals of ceramics side-by-side with processing issues and machinery selection, making this book an invaluable guide for downstream sectors evaluating the use of ceramics, as well as those involved in the manufacturing of structural ceramics - Numerous case studies from a wide range of applications (automotive, aerospace, electronics, medical devices)
Ceramics
Author: Dietrich Munz
Publisher: Springer Science & Business Media
ISBN: 3642584071
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The book gives a description of the failure phenomena of ceramic materials under mechanical loading, the methods to determine their properties, and the principles for material selection. The book presents fracture mechanical and statistical principles and their application to describe the scatter of strength and lifetime, while special chapters are devoted to creep behaviour, multiaxial failure criteria and thermal shock behaviour. XXXXXXX Neuer Text Describing how ceramic materials fracture and fail under mechanical loading, this book provides methods for determining the properties of ceramics, and gives criteria for selecting ceramic materials for particular applications. It also examines the fracture-mechanical and statistical principles and their use in understanding the strength and durability of ceramics. Special chapters are devoted to creep behavior, criteria for multiaxial failure, and behavior under thermal shock. Readers will gain insight into the design of reliable ceramic components.
Publisher: Springer Science & Business Media
ISBN: 3642584071
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The book gives a description of the failure phenomena of ceramic materials under mechanical loading, the methods to determine their properties, and the principles for material selection. The book presents fracture mechanical and statistical principles and their application to describe the scatter of strength and lifetime, while special chapters are devoted to creep behaviour, multiaxial failure criteria and thermal shock behaviour. XXXXXXX Neuer Text Describing how ceramic materials fracture and fail under mechanical loading, this book provides methods for determining the properties of ceramics, and gives criteria for selecting ceramic materials for particular applications. It also examines the fracture-mechanical and statistical principles and their use in understanding the strength and durability of ceramics. Special chapters are devoted to creep behavior, criteria for multiaxial failure, and behavior under thermal shock. Readers will gain insight into the design of reliable ceramic components.
Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering
Author: Joël Lépinoux
Publisher: Springer Science & Business Media
ISBN: 9401140480
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
A profusion of research and results on the mechanical behaviour of crystalline solids has followed the discovery of dislocations in the early thirties. This trend has been enhanced by the development of powerful experimental techniques. particularly X ray diffraction. transmission and scanning electron microscopy. microanalysis. The technological advancement has given rise to the study of various and complex materials. not to speak of those recently invented. whose mechanical properties need to be mastered. either for their lise as structural materials. or more simply for detenllining their fonnability processes. As is often the case this fast growth has been diverted both by the burial of early fundamental results which are rediscovered more or less accurately. and by the too fast publication of inaccurate results. which propagate widely. and are accepted without criticism. Examples of these statements abound. and will not be quoted here for the sake of dispassionateness. Understanding the mechanical properties of materials implies the use of various experimental techniques. combined with a good theoretical knowledge of elasticity. thermodynamics and solid state physics. The recent development of various computer techniques (simulation. ab initio calculations) has added to the difficulty of gathering the experimental information. and mastering the theoretical understanding. No laboratory is equipped with all the possible experimental settings. almost no scientist masters all this theoretical kno\vledge. Therefore. cooperation between scientists is needed more than even before.
Publisher: Springer Science & Business Media
ISBN: 9401140480
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
A profusion of research and results on the mechanical behaviour of crystalline solids has followed the discovery of dislocations in the early thirties. This trend has been enhanced by the development of powerful experimental techniques. particularly X ray diffraction. transmission and scanning electron microscopy. microanalysis. The technological advancement has given rise to the study of various and complex materials. not to speak of those recently invented. whose mechanical properties need to be mastered. either for their lise as structural materials. or more simply for detenllining their fonnability processes. As is often the case this fast growth has been diverted both by the burial of early fundamental results which are rediscovered more or less accurately. and by the too fast publication of inaccurate results. which propagate widely. and are accepted without criticism. Examples of these statements abound. and will not be quoted here for the sake of dispassionateness. Understanding the mechanical properties of materials implies the use of various experimental techniques. combined with a good theoretical knowledge of elasticity. thermodynamics and solid state physics. The recent development of various computer techniques (simulation. ab initio calculations) has added to the difficulty of gathering the experimental information. and mastering the theoretical understanding. No laboratory is equipped with all the possible experimental settings. almost no scientist masters all this theoretical kno\vledge. Therefore. cooperation between scientists is needed more than even before.
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 564
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 564
Book Description
MATERIAL SELECTION AND CORROSION - Volume II
Author:
Publisher: EOLSS Publications
ISBN: 1848264186
Category :
Languages : en
Pages : 372
Book Description
These volumes are a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The books are concerned with the development and selection of the best possible material for a particular engineering task and the determination of the most effective method of producing the materials and the component. The complexity of modern processing and the need for efficient production and use of materials are discussed and illustrated by examples from current practice. Properties are determined by structure, which in turn depends on the processing route. Theses volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers.
Publisher: EOLSS Publications
ISBN: 1848264186
Category :
Languages : en
Pages : 372
Book Description
These volumes are a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The books are concerned with the development and selection of the best possible material for a particular engineering task and the determination of the most effective method of producing the materials and the component. The complexity of modern processing and the need for efficient production and use of materials are discussed and illustrated by examples from current practice. Properties are determined by structure, which in turn depends on the processing route. Theses volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers.
Ultra-High Temperature Ceramics
Author: William G. Fahrenholtz
Publisher: John Wiley & Sons
ISBN: 111892441X
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.
Publisher: John Wiley & Sons
ISBN: 111892441X
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.
Micro- and Macromechanical Properties of Materials
Author: Yichun Zhou
Publisher: CRC Press
ISBN: 1466592443
Category : Science
Languages : en
Pages : 608
Book Description
This is an English translation of a Chinese textbook that has been designated a national planned university textbook, the highest award given to scientific textbooks in China. The book provides a complete overview of mechanical properties and fracture mechanics in materials science, mechanics, and physics. It details the macro- and micro-mechanical properties of metal structural materials, nonmetal structural materials, and various functional materials. It also discusses the macro and micro failure mechanism under different loadings and contains research results on thin film mechanics, smart material mechanics, and more.
Publisher: CRC Press
ISBN: 1466592443
Category : Science
Languages : en
Pages : 608
Book Description
This is an English translation of a Chinese textbook that has been designated a national planned university textbook, the highest award given to scientific textbooks in China. The book provides a complete overview of mechanical properties and fracture mechanics in materials science, mechanics, and physics. It details the macro- and micro-mechanical properties of metal structural materials, nonmetal structural materials, and various functional materials. It also discusses the macro and micro failure mechanism under different loadings and contains research results on thin film mechanics, smart material mechanics, and more.