Author: Lavanya Sharma
Publisher: CRC Press
ISBN: 1040030823
Category : Computers
Languages : en
Pages : 311
Book Description
This book presents the latest developments in deep learning-enabled healthcare tools and technologies and offers practical ideas for using the IoT with deep learning (motion-based object data) to deal with human dynamics and challenges including critical application domains, technologies, medical imaging, drug discovery, insurance fraud detection and solutions to handle relevant challenges. This book covers real-time healthcare applications, novel solutions, current open challenges, and the future of deep learning for next-generation healthcare. It includes detailed analysis of the utilization of the IoT with deep learning and its underlying technologies in critical application areas of emergency departments such as drug discovery, medical imaging, fraud detection, Alzheimer's disease, and genomes. Presents practical approaches of using the IoT with deep learning vision and how it deals with human dynamics Offers novel solution for medical imaging including skin lesion detection, cancer detection, enhancement techniques for MRI images, automated disease prediction, fraud detection, genomes, and many more Includes the latest technological advances in the IoT and deep learning with their implementations in healthcare Combines deep learning and analysis in the unified framework to understand both IoT and deep learning applications Covers the challenging issues related to data collection by sensors, detection and tracking of moving objects and solutions to handle relevant challenges Postgraduate students and researchers in the departments of computer science, working in the areas of the IoT, deep learning, machine learning, image processing, big data, cloud computing, and remote sensing will find this book useful.
Deep Learning in Internet of Things for Next Generation Healthcare
Author: Lavanya Sharma
Publisher: CRC Press
ISBN: 1040030823
Category : Computers
Languages : en
Pages : 311
Book Description
This book presents the latest developments in deep learning-enabled healthcare tools and technologies and offers practical ideas for using the IoT with deep learning (motion-based object data) to deal with human dynamics and challenges including critical application domains, technologies, medical imaging, drug discovery, insurance fraud detection and solutions to handle relevant challenges. This book covers real-time healthcare applications, novel solutions, current open challenges, and the future of deep learning for next-generation healthcare. It includes detailed analysis of the utilization of the IoT with deep learning and its underlying technologies in critical application areas of emergency departments such as drug discovery, medical imaging, fraud detection, Alzheimer's disease, and genomes. Presents practical approaches of using the IoT with deep learning vision and how it deals with human dynamics Offers novel solution for medical imaging including skin lesion detection, cancer detection, enhancement techniques for MRI images, automated disease prediction, fraud detection, genomes, and many more Includes the latest technological advances in the IoT and deep learning with their implementations in healthcare Combines deep learning and analysis in the unified framework to understand both IoT and deep learning applications Covers the challenging issues related to data collection by sensors, detection and tracking of moving objects and solutions to handle relevant challenges Postgraduate students and researchers in the departments of computer science, working in the areas of the IoT, deep learning, machine learning, image processing, big data, cloud computing, and remote sensing will find this book useful.
Publisher: CRC Press
ISBN: 1040030823
Category : Computers
Languages : en
Pages : 311
Book Description
This book presents the latest developments in deep learning-enabled healthcare tools and technologies and offers practical ideas for using the IoT with deep learning (motion-based object data) to deal with human dynamics and challenges including critical application domains, technologies, medical imaging, drug discovery, insurance fraud detection and solutions to handle relevant challenges. This book covers real-time healthcare applications, novel solutions, current open challenges, and the future of deep learning for next-generation healthcare. It includes detailed analysis of the utilization of the IoT with deep learning and its underlying technologies in critical application areas of emergency departments such as drug discovery, medical imaging, fraud detection, Alzheimer's disease, and genomes. Presents practical approaches of using the IoT with deep learning vision and how it deals with human dynamics Offers novel solution for medical imaging including skin lesion detection, cancer detection, enhancement techniques for MRI images, automated disease prediction, fraud detection, genomes, and many more Includes the latest technological advances in the IoT and deep learning with their implementations in healthcare Combines deep learning and analysis in the unified framework to understand both IoT and deep learning applications Covers the challenging issues related to data collection by sensors, detection and tracking of moving objects and solutions to handle relevant challenges Postgraduate students and researchers in the departments of computer science, working in the areas of the IoT, deep learning, machine learning, image processing, big data, cloud computing, and remote sensing will find this book useful.
Integrating AI in IoT Analytics on the Cloud for Healthcare Applications
Author: Jeya Mala, D.
Publisher: IGI Global
ISBN: 1799891348
Category : Computers
Languages : en
Pages : 312
Book Description
Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.
Publisher: IGI Global
ISBN: 1799891348
Category : Computers
Languages : en
Pages : 312
Book Description
Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.
Internet of Things and Big Data Technologies for Next Generation Healthcare
Author: Chintan Bhatt
Publisher: Springer
ISBN: 3319497367
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.
Publisher: Springer
ISBN: 3319497367
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.
Next Generation Internet of Things
Author: Vermesan, Ovidiu
Publisher: River Publishers
ISBN: 8770220085
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment. The text builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment. The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual and augmented reality (VR/AR), and AI transformation. Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats. The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications. The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications. Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems. New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure. The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas.
Publisher: River Publishers
ISBN: 8770220085
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment. The text builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment. The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual and augmented reality (VR/AR), and AI transformation. Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats. The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications. The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications. Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems. New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure. The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas.
Transforming the Internet of Things for Next-Generation Smart Systems
Author: Alankar, Bhavya
Publisher: IGI Global
ISBN: 1799875431
Category : Computers
Languages : en
Pages : 173
Book Description
The internet of things (IoT) has massive potential to transform current business models and enhance human lifestyles. With the current pace of research, IoT will soon find many new horizons to touch. IoT is now providing a base of technological advancement in various realms such as pervasive healthcare, smart homes, smart cities, connected logistics, automated supply chain, manufacturing units, and many more. IoT is also paving the path for the emergence of the digital revolution in industrial technology, termed Industry 4.0. Transforming the Internet of Things for Next-Generation Smart Systems focuses on the internet of things (IoT) and how it is involved in modern day technologies in a variety of domains. The chapters cover IoT in sectors such as agriculture, education, business and management, and computer science applications. The multi-disciplinary view of IoT provided within this book makes it an ideal reference work for IT specialists, technologists, engineers, developers, practitioners, researchers, academicians, and students interested in how IoT will be implemented in the next generation of smart systems and play an integral role in advancing technology in the future.
Publisher: IGI Global
ISBN: 1799875431
Category : Computers
Languages : en
Pages : 173
Book Description
The internet of things (IoT) has massive potential to transform current business models and enhance human lifestyles. With the current pace of research, IoT will soon find many new horizons to touch. IoT is now providing a base of technological advancement in various realms such as pervasive healthcare, smart homes, smart cities, connected logistics, automated supply chain, manufacturing units, and many more. IoT is also paving the path for the emergence of the digital revolution in industrial technology, termed Industry 4.0. Transforming the Internet of Things for Next-Generation Smart Systems focuses on the internet of things (IoT) and how it is involved in modern day technologies in a variety of domains. The chapters cover IoT in sectors such as agriculture, education, business and management, and computer science applications. The multi-disciplinary view of IoT provided within this book makes it an ideal reference work for IT specialists, technologists, engineers, developers, practitioners, researchers, academicians, and students interested in how IoT will be implemented in the next generation of smart systems and play an integral role in advancing technology in the future.
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Deep Learning for Internet of Things Infrastructure
Author: Uttam Ghosh
Publisher: CRC Press
ISBN: 1000431894
Category : Computers
Languages : en
Pages : 267
Book Description
This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of deep learning (DL)–based data analytics of IoT (Internet of Things) infrastructures. Deep Learning for Internet of Things Infrastructure addresses emerging trends and issues on IoT systems and services across various application domains. The book investigates the challenges posed by the implementation of deep learning on IoT networking models and services. It provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT. The book also explores new functions and technologies to provide adaptive services and intelligent applications for different end users. FEATURES Promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of DL-based data analytics of IoT infrastructures Addresses emerging trends and issues on IoT systems and services across various application domains Investigates the challenges posed by the implementation of deep learning on IoT networking models and services Provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT Explores new functions and technologies to provide adaptive services and intelligent applications for different end users Uttam Ghosh is an Assistant Professor in the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA. Mamoun Alazab is an Associate Professor in the College of Engineering, IT and Environment at Charles Darwin University, Australia. Ali Kashif Bashir is a Senior Lecturer/Associate Professor and Program Leader of BSc (H) Computer Forensics and Security at the Department of Computing and Mathematics, Manchester Metropolitan University, United Kingdom. Al-Sakib Khan Pathan is an Adjunct Professor of Computer Science and Engineering at the Independent University, Bangladesh.
Publisher: CRC Press
ISBN: 1000431894
Category : Computers
Languages : en
Pages : 267
Book Description
This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of deep learning (DL)–based data analytics of IoT (Internet of Things) infrastructures. Deep Learning for Internet of Things Infrastructure addresses emerging trends and issues on IoT systems and services across various application domains. The book investigates the challenges posed by the implementation of deep learning on IoT networking models and services. It provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT. The book also explores new functions and technologies to provide adaptive services and intelligent applications for different end users. FEATURES Promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of DL-based data analytics of IoT infrastructures Addresses emerging trends and issues on IoT systems and services across various application domains Investigates the challenges posed by the implementation of deep learning on IoT networking models and services Provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT Explores new functions and technologies to provide adaptive services and intelligent applications for different end users Uttam Ghosh is an Assistant Professor in the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA. Mamoun Alazab is an Associate Professor in the College of Engineering, IT and Environment at Charles Darwin University, Australia. Ali Kashif Bashir is a Senior Lecturer/Associate Professor and Program Leader of BSc (H) Computer Forensics and Security at the Department of Computing and Mathematics, Manchester Metropolitan University, United Kingdom. Al-Sakib Khan Pathan is an Adjunct Professor of Computer Science and Engineering at the Independent University, Bangladesh.
Computational Analysis and Deep Learning for Medical Care
Author: Amit Kumar Tyagi
Publisher: John Wiley & Sons
ISBN: 1119785723
Category : Computers
Languages : en
Pages : 532
Book Description
The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.
Publisher: John Wiley & Sons
ISBN: 1119785723
Category : Computers
Languages : en
Pages : 532
Book Description
The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.
Smart Healthcare Systems
Author: Adwitiya Sinha
Publisher: Chapman & Hall/CRC
ISBN: 9780367030568
Category : Artificial intelligence
Languages : en
Pages : 232
Book Description
About the Book The book provides details of applying intelligent mining techniques for extracting & pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. This book would provide insight to the learners about Machine Learning, Data Analytics, and Sustainable Computing. Salient Features of the Book Exhaustive coverage of Data Analysis using R Real-life healthcare models for: Visually Impaired Disease Diagnosis & Treatment options Applications of Big Data & Deep Learning in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions. ng in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions.
Publisher: Chapman & Hall/CRC
ISBN: 9780367030568
Category : Artificial intelligence
Languages : en
Pages : 232
Book Description
About the Book The book provides details of applying intelligent mining techniques for extracting & pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. This book would provide insight to the learners about Machine Learning, Data Analytics, and Sustainable Computing. Salient Features of the Book Exhaustive coverage of Data Analysis using R Real-life healthcare models for: Visually Impaired Disease Diagnosis & Treatment options Applications of Big Data & Deep Learning in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions. ng in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions.
Emerging Technologies for Healthcare
Author: Monika Mangla
Publisher: John Wiley & Sons
ISBN: 1119791723
Category : Computers
Languages : de
Pages : 418
Book Description
“Emerging Technologies for Healthcare” begins with an IoT-based solution for the automated healthcare sector which is enhanced to provide solutions with advanced deep learning techniques. The book provides feasible solutions through various machine learning approaches and applies them to disease analysis and prediction. An example of this is employing a three-dimensional matrix approach for treating chronic kidney disease, the diagnosis and prognostication of acquired demyelinating syndrome (ADS) and autism spectrum disorder, and the detection of pneumonia. In addition, it provides healthcare solutions for post COVID-19 outbreaks through various suitable approaches, Moreover, a detailed detection mechanism is discussed which is used to devise solutions for predicting personality through handwriting recognition; and novel approaches for sentiment analysis are also discussed with sufficient data and its dimensions. This book not only covers theoretical approaches and algorithms, but also contains the sequence of steps used to analyze problems with data, processes, reports, and optimization techniques. It will serve as a single source for solving various problems via machine learning algorithms.
Publisher: John Wiley & Sons
ISBN: 1119791723
Category : Computers
Languages : de
Pages : 418
Book Description
“Emerging Technologies for Healthcare” begins with an IoT-based solution for the automated healthcare sector which is enhanced to provide solutions with advanced deep learning techniques. The book provides feasible solutions through various machine learning approaches and applies them to disease analysis and prediction. An example of this is employing a three-dimensional matrix approach for treating chronic kidney disease, the diagnosis and prognostication of acquired demyelinating syndrome (ADS) and autism spectrum disorder, and the detection of pneumonia. In addition, it provides healthcare solutions for post COVID-19 outbreaks through various suitable approaches, Moreover, a detailed detection mechanism is discussed which is used to devise solutions for predicting personality through handwriting recognition; and novel approaches for sentiment analysis are also discussed with sufficient data and its dimensions. This book not only covers theoretical approaches and algorithms, but also contains the sequence of steps used to analyze problems with data, processes, reports, and optimization techniques. It will serve as a single source for solving various problems via machine learning algorithms.