Author: Shashi Narayan
Publisher: Morgan & Claypool Publishers
ISBN: 1681737590
Category : Computers
Languages : en
Pages : 201
Book Description
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Deep Learning Approaches to Text Production
Author: Shashi Narayan
Publisher: Morgan & Claypool Publishers
ISBN: 1681737590
Category : Computers
Languages : en
Pages : 201
Book Description
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Publisher: Morgan & Claypool Publishers
ISBN: 1681737590
Category : Computers
Languages : en
Pages : 201
Book Description
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Deep Learning Approaches to Text Production
Author: Shashi Narayan
Publisher: Springer Nature
ISBN: 3031021738
Category : Computers
Languages : en
Pages : 175
Book Description
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Publisher: Springer Nature
ISBN: 3031021738
Category : Computers
Languages : en
Pages : 175
Book Description
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Practical Natural Language Processing
Author: Sowmya Vajjala
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455
Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455
Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Neural Network Methods in Natural Language Processing
Author: Yoav Goldberg
Publisher: Morgan & Claypool Publishers
ISBN: 162705295X
Category : Computers
Languages : en
Pages : 311
Book Description
Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Publisher: Morgan & Claypool Publishers
ISBN: 162705295X
Category : Computers
Languages : en
Pages : 311
Book Description
Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Natural Language Processing: Practical Approach
Author: Syed Muzamil Basha
Publisher: MileStone Research Publications
ISBN: 9358109254
Category : Computers
Languages : en
Pages : 103
Book Description
The "Natural Language Processing Practical Approach" is a textbook that provides a practical introduction to the field of Natural Language Processing (NLP). The goal of the textbook is to provide a hands-on, practical guide to NLP, with a focus on real-world applications and use cases. The textbook covers a range of NLP topics, including text preprocessing, sentiment analysis, named entity recognition, text classification, and more. The textbook emphasizes the use of algorithms and models to solve NLP problems and provides practical examples and code snippets in various programming languages, including Python. The textbook is designed for students, researchers, and practitioners in NLP who want to gain a deeper understanding of the field and build their own NLP projects. The current state of NLP is rapidly evolving with advancements in machine learning and deep learning techniques. The field has seen a significant increase in research and development efforts in recent years, leading to improved performance and new applications in areas such as sentiment analysis, text classification, language translation, and named entity recognition. The future prospects of NLP are bright, with continued development in areas such as reinforcement learning, transfer learning, and unsupervised learning, which are expected to further improve the performance of NLP models. Additionally, increasing amounts of text data available through the internet and growing demand for human-like conversational interfaces in areas such as customer service and virtual assistants will likely drive further advancements in NLP. The benefits of a hands-on, practical approach to natural language processing include: 1. Improved understanding: Practical approaches allow students to experience the concepts and techniques in action, helping them to better understand how NLP works. 2. Increased motivation: Hands-on approaches to learning can increase student engagement and motivation, making the learning process more enjoyable and effective. 3. Hands-on experience: By working with real data and implementing NLP techniques, students gain hands-on experience in applying NLP techniques to real-world problems. 4. Improved problem-solving skills: Practical approaches help students to develop problem-solving skills by working through real-world problems and challenges. 5. Better retention: When students have hands-on experience with NLP techniques, they are more likely to retain the information and be able to apply it in the future. A comprehensive understanding of NLP would include knowledge of its various tasks, techniques, algorithms, challenges, and applications. It also involves understanding the basics of computational linguistics, natural language understanding, and text representation methods such as tokenization, stemming, and lemmatization. Moreover, hands-on experience with NLP tools and libraries like NLTK, Spacy, and PyTorch would also enhance one's understanding of NLP.
Publisher: MileStone Research Publications
ISBN: 9358109254
Category : Computers
Languages : en
Pages : 103
Book Description
The "Natural Language Processing Practical Approach" is a textbook that provides a practical introduction to the field of Natural Language Processing (NLP). The goal of the textbook is to provide a hands-on, practical guide to NLP, with a focus on real-world applications and use cases. The textbook covers a range of NLP topics, including text preprocessing, sentiment analysis, named entity recognition, text classification, and more. The textbook emphasizes the use of algorithms and models to solve NLP problems and provides practical examples and code snippets in various programming languages, including Python. The textbook is designed for students, researchers, and practitioners in NLP who want to gain a deeper understanding of the field and build their own NLP projects. The current state of NLP is rapidly evolving with advancements in machine learning and deep learning techniques. The field has seen a significant increase in research and development efforts in recent years, leading to improved performance and new applications in areas such as sentiment analysis, text classification, language translation, and named entity recognition. The future prospects of NLP are bright, with continued development in areas such as reinforcement learning, transfer learning, and unsupervised learning, which are expected to further improve the performance of NLP models. Additionally, increasing amounts of text data available through the internet and growing demand for human-like conversational interfaces in areas such as customer service and virtual assistants will likely drive further advancements in NLP. The benefits of a hands-on, practical approach to natural language processing include: 1. Improved understanding: Practical approaches allow students to experience the concepts and techniques in action, helping them to better understand how NLP works. 2. Increased motivation: Hands-on approaches to learning can increase student engagement and motivation, making the learning process more enjoyable and effective. 3. Hands-on experience: By working with real data and implementing NLP techniques, students gain hands-on experience in applying NLP techniques to real-world problems. 4. Improved problem-solving skills: Practical approaches help students to develop problem-solving skills by working through real-world problems and challenges. 5. Better retention: When students have hands-on experience with NLP techniques, they are more likely to retain the information and be able to apply it in the future. A comprehensive understanding of NLP would include knowledge of its various tasks, techniques, algorithms, challenges, and applications. It also involves understanding the basics of computational linguistics, natural language understanding, and text representation methods such as tokenization, stemming, and lemmatization. Moreover, hands-on experience with NLP tools and libraries like NLTK, Spacy, and PyTorch would also enhance one's understanding of NLP.
Deep Learning for Robot Perception and Cognition
Author: Alexandros Iosifidis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Computational Processing of the Portuguese Language
Author: Paulo Quaresma
Publisher: Springer Nature
ISBN: 3030415058
Category : Computers
Languages : en
Pages : 432
Book Description
This book constitutes the proceedings of the 14th International Conference on Computational Processing of the Portuguese Language, PROPOR 2020, held in Evora, Portugal, in March 2020. The 36 full papers presented together with 5 short papers were carefully reviewed and selected from 70 submissions. They are grouped in topical sections on speech processing; resources and evaluation; natural language processing applications; semantics; natural language processing tasks; and multilinguality.
Publisher: Springer Nature
ISBN: 3030415058
Category : Computers
Languages : en
Pages : 432
Book Description
This book constitutes the proceedings of the 14th International Conference on Computational Processing of the Portuguese Language, PROPOR 2020, held in Evora, Portugal, in March 2020. The 36 full papers presented together with 5 short papers were carefully reviewed and selected from 70 submissions. They are grouped in topical sections on speech processing; resources and evaluation; natural language processing applications; semantics; natural language processing tasks; and multilinguality.
Deep Learning
Author: Bhavatarini N
Publisher: MileStone Research Publications
ISBN: 9355781962
Category : Computers
Languages : en
Pages : 158
Book Description
In a very short time, deep learning has become a widely useful technique, solving and automating problems in computer vision, robotics, healthcare, physics, biology, and beyond. One of the delightful things about deep learning is its relative simplicity. Powerful deep learning software has been built to make getting started fast and easy. In a few weeks, you can understand the basics and get comfortable with the techniques. This opens up a world of creativity. You start applying it to problems that have data at hand, and you feel wonderful seeing a machine solving problems for you. However, you slowly feel yourself getting closer to a giant barrier. You built a deep learning model, but it doesn’t work as well as you had hoped. This is when you enter the next stage, finding and reading state-of-the-art research on deep learning. However, there’s a voluminous body of knowledge on deep learning, with three decades of theory, techniques, and tooling behind it. As you read through some of this research, you realize that humans can explain simple things in really complicated ways. Scientists use words and mathematical notation in these papers that appear foreign, and no textbook or blog post seems to cover the necessary background that you need in accessible ways. Engineers and programmers assume you know how GPUs work and have knowledge about obscure tools.
Publisher: MileStone Research Publications
ISBN: 9355781962
Category : Computers
Languages : en
Pages : 158
Book Description
In a very short time, deep learning has become a widely useful technique, solving and automating problems in computer vision, robotics, healthcare, physics, biology, and beyond. One of the delightful things about deep learning is its relative simplicity. Powerful deep learning software has been built to make getting started fast and easy. In a few weeks, you can understand the basics and get comfortable with the techniques. This opens up a world of creativity. You start applying it to problems that have data at hand, and you feel wonderful seeing a machine solving problems for you. However, you slowly feel yourself getting closer to a giant barrier. You built a deep learning model, but it doesn’t work as well as you had hoped. This is when you enter the next stage, finding and reading state-of-the-art research on deep learning. However, there’s a voluminous body of knowledge on deep learning, with three decades of theory, techniques, and tooling behind it. As you read through some of this research, you realize that humans can explain simple things in really complicated ways. Scientists use words and mathematical notation in these papers that appear foreign, and no textbook or blog post seems to cover the necessary background that you need in accessible ways. Engineers and programmers assume you know how GPUs work and have knowledge about obscure tools.
Deep Learning with Structured Data
Author: Mark Ryan
Publisher: Simon and Schuster
ISBN: 163835717X
Category : Computers
Languages : en
Pages : 262
Book Description
Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps
Publisher: Simon and Schuster
ISBN: 163835717X
Category : Computers
Languages : en
Pages : 262
Book Description
Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps
Deep Learning Approaches for Spoken and Natural Language Processing
Author: Virender Kadyan
Publisher: Springer Nature
ISBN: 3030797783
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.
Publisher: Springer Nature
ISBN: 3030797783
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.