Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing PDF Author: Le Lu
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327

Get Book Here

Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing PDF Author: Le Lu
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327

Get Book Here

Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis PDF Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544

Get Book Here

Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Understanding and Interpreting Machine Learning in Medical Image Computing Applications

Understanding and Interpreting Machine Learning in Medical Image Computing Applications PDF Author: Danail Stoyanov
Publisher: Springer
ISBN: 3030026280
Category : Computers
Languages : en
Pages : 158

Get Book Here

Book Description
This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics PDF Author: Le Lu
Publisher: Springer Nature
ISBN: 3030139697
Category : Computers
Languages : en
Pages : 452

Get Book Here

Book Description
This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 PDF Author: Nassir Navab
Publisher: Springer
ISBN: 3319245740
Category : Computers
Languages : en
Pages : 801

Get Book Here

Book Description
The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions.

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis PDF Author: Gobert Lee
Publisher: Springer Nature
ISBN: 3030331288
Category : Medical
Languages : en
Pages : 184

Get Book Here

Book Description
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Medical Image Registration

Medical Image Registration PDF Author: Joseph V. Hajnal
Publisher: CRC Press
ISBN: 1420042475
Category : Medical
Languages : en
Pages : 394

Get Book Here

Book Description
Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provid

Deep Learning and Data Labeling for Medical Applications

Deep Learning and Data Labeling for Medical Applications PDF Author: Gustavo Carneiro
Publisher: Springer
ISBN: 3319469762
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction PDF Author: Farah Deeba
Publisher: Springer Nature
ISBN: 3030615987
Category : Computers
Languages : en
Pages : 170

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support PDF Author: M. Jorge Cardoso
Publisher: Springer
ISBN: 3319675583
Category : Computers
Languages : en
Pages : 399

Get Book Here

Book Description
This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.