Author: Christian Bayer
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Sparked by Alòs, León und Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson und Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz und Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.
Deep Calibration of Rough Stochastic Volatility Models
Author: Christian Bayer
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Sparked by Alòs, León und Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson und Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz und Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Sparked by Alòs, León und Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson und Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz und Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.
Rough Volatility
Author: Christian Bayer
Publisher: SIAM
ISBN: 1611977789
Category : Mathematics
Languages : en
Pages : 292
Book Description
Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility contributes to the understanding and application of rough volatility models by equipping readers with the tools and insights needed to delve into the topic, exploring the motivation for rough volatility modeling, providing a toolbox for computation and practical implementation, and organizing the material to reflect the subject’s development and progression. This book is designed for researchers and graduate students in quantitative finance as well as quantitative analysts and finance professionals.
Publisher: SIAM
ISBN: 1611977789
Category : Mathematics
Languages : en
Pages : 292
Book Description
Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility contributes to the understanding and application of rough volatility models by equipping readers with the tools and insights needed to delve into the topic, exploring the motivation for rough volatility modeling, providing a toolbox for computation and practical implementation, and organizing the material to reflect the subject’s development and progression. This book is designed for researchers and graduate students in quantitative finance as well as quantitative analysts and finance professionals.
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Author: Gianmarco De Francisci Morales
Publisher: Springer Nature
ISBN: 3031434277
Category :
Languages : en
Pages : 745
Book Description
Publisher: Springer Nature
ISBN: 3031434277
Category :
Languages : en
Pages : 745
Book Description
Machine Learning for Risk Calculations
Author: Ignacio Ruiz
Publisher: John Wiley & Sons
ISBN: 1119791383
Category : Business & Economics
Languages : en
Pages : 471
Book Description
State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.
Publisher: John Wiley & Sons
ISBN: 1119791383
Category : Business & Economics
Languages : en
Pages : 471
Book Description
State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.
Large Deviations and Asymptotic Methods in Finance
Author: Peter K. Friz
Publisher: Springer
ISBN: 3319116053
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Publisher: Springer
ISBN: 3319116053
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Machine Learning and Data Sciences for Financial Markets
Author: Agostino Capponi
Publisher: Cambridge University Press
ISBN: 1316516199
Category : Mathematics
Languages : en
Pages : 742
Book Description
Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.
Publisher: Cambridge University Press
ISBN: 1316516199
Category : Mathematics
Languages : en
Pages : 742
Book Description
Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.
Perturbation Methods in Credit Derivatives
Author: Colin Turfus
Publisher: John Wiley & Sons
ISBN: 1119609615
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Stress-test financial models and price credit instruments with confidence and efficiency using the perturbation approach taught in this expert volume Perturbation Methods in Credit Derivatives: Strategies for Efficient Risk Management offers an incisive examination of a new approach to pricing credit-contingent financial instruments. Author and experienced financial engineer Dr. Colin Turfus has created an approach that allows model validators to perform rapid benchmarking of risk and pricing models while making the most efficient use possible of computing resources. The book provides innumerable benefits to a wide range of quantitative financial experts attempting to comply with increasingly burdensome regulatory stress-testing requirements, including: Replacing time-consuming Monte Carlo simulations with faster, simpler pricing algorithms for front-office quants Allowing CVA quants to quantify the impact of counterparty risk, including wrong-way correlation risk, more efficiently Developing more efficient algorithms for generating stress scenarios for market risk quants Obtaining more intuitive analytic pricing formulae which offer a clearer intuition of the important relationships among market parameters, modelling assumptions and trade/portfolio characteristics for traders The methods comprehensively taught in Perturbation Methods in Credit Derivatives also apply to CVA/DVA calculations and contingent credit default swap pricing.
Publisher: John Wiley & Sons
ISBN: 1119609615
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Stress-test financial models and price credit instruments with confidence and efficiency using the perturbation approach taught in this expert volume Perturbation Methods in Credit Derivatives: Strategies for Efficient Risk Management offers an incisive examination of a new approach to pricing credit-contingent financial instruments. Author and experienced financial engineer Dr. Colin Turfus has created an approach that allows model validators to perform rapid benchmarking of risk and pricing models while making the most efficient use possible of computing resources. The book provides innumerable benefits to a wide range of quantitative financial experts attempting to comply with increasingly burdensome regulatory stress-testing requirements, including: Replacing time-consuming Monte Carlo simulations with faster, simpler pricing algorithms for front-office quants Allowing CVA quants to quantify the impact of counterparty risk, including wrong-way correlation risk, more efficiently Developing more efficient algorithms for generating stress scenarios for market risk quants Obtaining more intuitive analytic pricing formulae which offer a clearer intuition of the important relationships among market parameters, modelling assumptions and trade/portfolio characteristics for traders The methods comprehensively taught in Perturbation Methods in Credit Derivatives also apply to CVA/DVA calculations and contingent credit default swap pricing.
Computational Methods in Finance
Author: Ali Hirsa
Publisher: CRC Press
ISBN: 1498778615
Category : Business & Economics
Languages : en
Pages : 644
Book Description
Computational Methods in Finance is a book developed from the author’s courses at Columbia University and the Courant Institute of New York University. This self-contained text is designed for graduate students in financial engineering and mathematical finance, as well as practitioners in the financial industry. It will help readers accurately price a vast array of derivatives. This new edition has been thoroughly revised throughout to bring it up to date with recent developments. It features numerous new exercises and examples, as well as two entirely new chapters on machine learning. Features Explains how to solve complex functional equations through numerical methods Includes dozens of challenging exercises Suitable as a graduate-level textbook for financial engineering and financial mathematics or as a professional resource for working quants.
Publisher: CRC Press
ISBN: 1498778615
Category : Business & Economics
Languages : en
Pages : 644
Book Description
Computational Methods in Finance is a book developed from the author’s courses at Columbia University and the Courant Institute of New York University. This self-contained text is designed for graduate students in financial engineering and mathematical finance, as well as practitioners in the financial industry. It will help readers accurately price a vast array of derivatives. This new edition has been thoroughly revised throughout to bring it up to date with recent developments. It features numerous new exercises and examples, as well as two entirely new chapters on machine learning. Features Explains how to solve complex functional equations through numerical methods Includes dozens of challenging exercises Suitable as a graduate-level textbook for financial engineering and financial mathematics or as a professional resource for working quants.
Stochastic Volatility Modeling
Author: Lorenzo Bergomi
Publisher: CRC Press
ISBN: 1482244071
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Publisher: CRC Press
ISBN: 1482244071
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Stochastic Calculus for Fractional Brownian Motion and Applications
Author: Francesca Biagini
Publisher: Springer Science & Business Media
ISBN: 1846287979
Category : Mathematics
Languages : en
Pages : 331
Book Description
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Publisher: Springer Science & Business Media
ISBN: 1846287979
Category : Mathematics
Languages : en
Pages : 331
Book Description
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.