Author: Chunguang Sun
Publisher:
ISBN:
Category : Least squares
Languages : en
Pages : 32
Book Description
Dealing with Dense Rows in the Solution of Sparse Linear Least Squares Problems
Direct Methods for Sparse Linear Systems
Author: Timothy A. Davis
Publisher: SIAM
ISBN: 0898716136
Category : Computers
Languages : en
Pages : 228
Book Description
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.
Publisher: SIAM
ISBN: 0898716136
Category : Computers
Languages : en
Pages : 228
Book Description
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Applied Numerical Linear Algebra
Author: James W. Demmel
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426
Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426
Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.
Numerical Methods for Least Squares Problems
Author: Ake Bjorck
Publisher: SIAM
ISBN: 9781611971484
Category : Mathematics
Languages : en
Pages : 425
Book Description
The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
Publisher: SIAM
ISBN: 9781611971484
Category : Mathematics
Languages : en
Pages : 425
Book Description
The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
Task Parallel Implementation of the Bowyer-Watson Algorithm
Author: Nikos P. Chrisochoides
Publisher:
ISBN:
Category : Numerical grid generation (Numerical analysis)
Languages : en
Pages : 26
Book Description
Publisher:
ISBN:
Category : Numerical grid generation (Numerical analysis)
Languages : en
Pages : 26
Book Description
Numerical Methods for Least Squares Problems, Second Edition
Author: Åke Björck
Publisher: SIAM
ISBN: 1611977959
Category : Mathematics
Languages : en
Pages : 509
Book Description
The method of least squares, discovered by Gauss in 1795, is a principal tool for reducing the influence of errors when fitting a mathematical model to given observations. Applications arise in many areas of science and engineering. The increased use of automatic data capturing frequently leads to large-scale least squares problems. Such problems can be solved by using recent developments in preconditioned iterative methods and in sparse QR factorization. The first edition of Numerical Methods for Least Squares Problems was the leading reference on the topic for many years. The updated second edition stands out compared to other books on this subject because it provides an in-depth and up-to-date treatment of direct and iterative methods for solving different types of least squares problems and for computing the singular value decomposition. It also is unique because it covers generalized, constrained, and nonlinear least squares problems as well as partial least squares and regularization methods for discrete ill-posed problems. The bibliography of over 1,100 historical and recent references provides a comprehensive survey of past and present research in the field. This book will be of interest to graduate students and researchers in applied mathematics and to researchers working with numerical linear algebra applications.
Publisher: SIAM
ISBN: 1611977959
Category : Mathematics
Languages : en
Pages : 509
Book Description
The method of least squares, discovered by Gauss in 1795, is a principal tool for reducing the influence of errors when fitting a mathematical model to given observations. Applications arise in many areas of science and engineering. The increased use of automatic data capturing frequently leads to large-scale least squares problems. Such problems can be solved by using recent developments in preconditioned iterative methods and in sparse QR factorization. The first edition of Numerical Methods for Least Squares Problems was the leading reference on the topic for many years. The updated second edition stands out compared to other books on this subject because it provides an in-depth and up-to-date treatment of direct and iterative methods for solving different types of least squares problems and for computing the singular value decomposition. It also is unique because it covers generalized, constrained, and nonlinear least squares problems as well as partial least squares and regularization methods for discrete ill-posed problems. The bibliography of over 1,100 historical and recent references provides a comprehensive survey of past and present research in the field. This book will be of interest to graduate students and researchers in applied mathematics and to researchers working with numerical linear algebra applications.
Computer Solution of Large Sparse Positive Definite Systems
Author: Alan George
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Iterative Solution of Symmetric Quasi-definite Linear Systems
Author: Dominique Orban
Publisher: SIAM
ISBN: 1611974739
Category : Mathematics
Languages : en
Pages : 101
Book Description
Numerous applications, including computational optimization and fluid dynamics, give rise to block linear systems of equations said to have the quasi-definite structure. In practical situations, the size or density of those systems can preclude a factorization approach, leaving only iterative methods as the solution technique. Known iterative methods, however, are not specifically designed to take advantage of the quasi-definite structure.? This book discusses the connection between quasi-definite systems and linear least-squares problems, the most common and best understood problems in applied mathematics, and explains how quasi-definite systems can be solved using tailored iterative methods for linear least squares (with half as much work!). To encourage researchers and students to use the software, it is provided in MATLAB, Python, and Julia.? The authors provide a concise account of the most well-known methods for symmetric systems and least-squares problems, research-level advances in the solution of problems with specific illustrations in optimization and fluid dynamics, and a website that hosts software in three languages.?
Publisher: SIAM
ISBN: 1611974739
Category : Mathematics
Languages : en
Pages : 101
Book Description
Numerous applications, including computational optimization and fluid dynamics, give rise to block linear systems of equations said to have the quasi-definite structure. In practical situations, the size or density of those systems can preclude a factorization approach, leaving only iterative methods as the solution technique. Known iterative methods, however, are not specifically designed to take advantage of the quasi-definite structure.? This book discusses the connection between quasi-definite systems and linear least-squares problems, the most common and best understood problems in applied mathematics, and explains how quasi-definite systems can be solved using tailored iterative methods for linear least squares (with half as much work!). To encourage researchers and students to use the software, it is provided in MATLAB, Python, and Julia.? The authors provide a concise account of the most well-known methods for symmetric systems and least-squares problems, research-level advances in the solution of problems with specific illustrations in optimization and fluid dynamics, and a website that hosts software in three languages.?
Linear and Nonlinear Conjugate Gradient-related Methods
Author: Loyce M. Adams
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.