De-bonding Strands as an Anchorage Zone Crack Control Method for Pretensioned Concrete Bulb-tee Bridge Girders Using Nonlinear Finite Element Analysis

De-bonding Strands as an Anchorage Zone Crack Control Method for Pretensioned Concrete Bulb-tee Bridge Girders Using Nonlinear Finite Element Analysis PDF Author: Emre Kizilarslan
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description
Wisconsin bulb tee pretensioned concrete girders have being used for bridges. Their effective spans to depth ratios and higher durability have made prestressed concrete girders desirable. However, cracks were observed at the anchorage zones of these girders because of the demand. To satisfy demand, these girders are heavily prestressed. Cracks initiate during detensioning of pretensioned strands and grow more while transporting them to the resting beds. These cracks create durability concerns as cracks lead aggressive salty water to the steel strands, endangering structures' stability. Especially, cracks in the bottom flange closer to the strands are main concerns in this research. This research primarily focused on the analyses of prestressed girder ends with modelling with nonlinear material properties to understand and recommend control methods for girder end cracking. The end zone behavior of the pretensioned girder was modelled using nonlinear material properties. The concrete nonlinearity, strain softening and stress redistribution upon cracking were also included in the behavior and the verification of tests were done by real tests on these girders. Finally, the reasons for cracks were explained by examining the principal tensile strain directions. The results of previous study showed that debonding strands can effectively control cracking. In this thesis, only debonding for cracking control method, therefore, was tested on 72W with 48 strands and 54W with 42 strands WI girders to see the real effect of debonding on anchorage zone cracks. After getting good results from tests and verifying them with Finite Element Analysis models, exact debonding percentages for other girders to eliminate cracks were presented by giving results of FEA models built for each of them.

De-bonding Strands as an Anchorage Zone Crack Control Method for Pretensioned Concrete Bulb-tee Bridge Girders Using Nonlinear Finite Element Analysis

De-bonding Strands as an Anchorage Zone Crack Control Method for Pretensioned Concrete Bulb-tee Bridge Girders Using Nonlinear Finite Element Analysis PDF Author: Emre Kizilarslan
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description
Wisconsin bulb tee pretensioned concrete girders have being used for bridges. Their effective spans to depth ratios and higher durability have made prestressed concrete girders desirable. However, cracks were observed at the anchorage zones of these girders because of the demand. To satisfy demand, these girders are heavily prestressed. Cracks initiate during detensioning of pretensioned strands and grow more while transporting them to the resting beds. These cracks create durability concerns as cracks lead aggressive salty water to the steel strands, endangering structures' stability. Especially, cracks in the bottom flange closer to the strands are main concerns in this research. This research primarily focused on the analyses of prestressed girder ends with modelling with nonlinear material properties to understand and recommend control methods for girder end cracking. The end zone behavior of the pretensioned girder was modelled using nonlinear material properties. The concrete nonlinearity, strain softening and stress redistribution upon cracking were also included in the behavior and the verification of tests were done by real tests on these girders. Finally, the reasons for cracks were explained by examining the principal tensile strain directions. The results of previous study showed that debonding strands can effectively control cracking. In this thesis, only debonding for cracking control method, therefore, was tested on 72W with 48 strands and 54W with 42 strands WI girders to see the real effect of debonding on anchorage zone cracks. After getting good results from tests and verifying them with Finite Element Analysis models, exact debonding percentages for other girders to eliminate cracks were presented by giving results of FEA models built for each of them.

Anchorage Zone Reinforcement for Post-tensioned Concrete Girders

Anchorage Zone Reinforcement for Post-tensioned Concrete Girders PDF Author: John Edward Breen
Publisher: Transportation Research Board
ISBN: 9780309053549
Category : Anchorage (Structural engineering).
Languages : en
Pages : 228

Get Book Here

Book Description


Strand Debonding for Pretensioned Girders

Strand Debonding for Pretensioned Girders PDF Author: Bahram M. Shahrooz
Publisher:
ISBN: 9780309446402
Category : Concrete bridges
Languages : en
Pages : 103

Get Book Here

Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Research Report 849: Strand Debonding for Pretensioned Girders provides proposed revisions to the current debonding provisions found within the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications with detailed examples of the application of the proposed revisions. The proposed revisions are based on comprehensive analytical and testing programs for investigating the effects of end anchorages, beam sections, end-diaphragm details, concrete strengths up to 15 ksi, and strand sizes.

Anchorage Zone Reinforcement for Post-tensioned Concrete Girders

Anchorage Zone Reinforcement for Post-tensioned Concrete Girders PDF Author:
Publisher:
ISBN:
Category : Anchorage (Structural engineering).
Languages : en
Pages : 228

Get Book Here

Book Description


Strand debonding in pretensioned beams -

Strand debonding in pretensioned beams - PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Prestressed Concrete Design and Construction

Prestressed Concrete Design and Construction PDF Author: Fritz Leonhardt
Publisher:
ISBN: 9780804445849
Category :
Languages : en
Pages : 677

Get Book Here

Book Description


Bond Performance of High-capacity Strands in High Strength Concrete

Bond Performance of High-capacity Strands in High Strength Concrete PDF Author: Xin Jiang
Publisher:
ISBN:
Category : Concrete
Languages : en
Pages : 146

Get Book Here

Book Description
18-mm-diameter (0.7-in.) strand has the ability to introduce almost twice the prestressing force of 13-mm-diameter (0.5-in.) strand and 135% of the prestressing force of 15-mm-diameter (0.6-in.) strand, which could result in a significant increase in the span capacity of the current AASHTO bulb tee girders without having to modify the sections or acquire new forms. To date, the information regarding the bond performance of 18-mm-diameter (0.7-in.) prestressing strand is very limited, preventing its application despite its attractive high-strength. Also, our understanding of the bond mechanism is incomplete and non-quantitative; a rational understanding of the bond mechanism would help predict the bond behavior and develop design guidelines. Therefore, this study concentrated on these two topics. The finite element method was applied to simulate the bond between the prestressing strand and concrete. A parametric analysis was conducted to analyze the factors affecting transfer length. With the comparison of the non-pretensioned and pretensioned pull-out tests, the contribution of each bond mechanism was quantitatively analyzed. The tests indicated that the bond performance was dependent on the specimen length and the pretension level, and the pretension force significantly affected the transfer length.

LRFD Guide Specifications for the Design of Pedestrian Bridges

LRFD Guide Specifications for the Design of Pedestrian Bridges PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 1560514698
Category : Bridges
Languages : en
Pages : 38

Get Book Here

Book Description


Post Tensioning Anchorage in Concrete I-girder Bridges

Post Tensioning Anchorage in Concrete I-girder Bridges PDF Author: Maher K. Tadros
Publisher:
ISBN:
Category : Anchorage (Structural engineering)
Languages : en
Pages : 214

Get Book Here

Book Description


Engineering for Structural Stability in Bridge Construction

Engineering for Structural Stability in Bridge Construction PDF Author: Federal Highway Federal Highway Administration
Publisher:
ISBN:
Category :
Languages : en
Pages : 669

Get Book Here

Book Description
This manual is intended to serve as a reference. It will provide technical information which will enable Manual users to perform the following activities:Describe typical erection practices for girder bridge superstructures and recognize critical construction stagesDiscuss typical practices for evaluating structural stability of girder bridge superstructures during early stages of erection and throughout bridge constructionExplain the basic concepts of stability and why it is important in bridge erection* Explain common techniques for performing advanced stability analysis along with their advantages and limitationsDescribe how differing construction sequences effect superstructure stabilityBe able to select appropriate loads, load combinations, and load factors for use in analyzing superstructure components during constructionBe able to analyze bridge members at various stages of erection* Develop erection plans that are safe and economical, and know what information is required and should be a part of those plansDescribe the differences between local, member and global (system) stability