DATA SCIENCE WORKSHOP: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

DATA SCIENCE WORKSHOP: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
This book titled " Data Science Workshop: Cervical Cancer Classification and Prediction using Machine Learning and Deep Learning with Python GUI" embarks on an insightful journey starting with an in-depth exploration of the dataset. This dataset encompasses various features that shed light on patients' medical histories and attributes. Utilizing the capabilities of pandas, the dataset is loaded, and essential details like data dimensions, column names, and data types are scrutinized. The presence of missing data is addressed by employing suitable strategies such as mean-based imputation for numerical features and categorical encoding for non-numeric ones. Subsequently, the project delves into an illuminating visualization of categorized feature distributions. Through the ingenious use of pie charts, bar plots, and heatmaps, the project unveils the distribution patterns of key attributes such as 'Hormonal Contraceptives,' 'Smokes,' 'IUD,' and others. These visualizations illuminate potential relationships between these features and the target variable 'Biopsy,' which signifies the presence or absence of cervical cancer. Such exploratory analyses serve as a vital foundation for identifying influential trends within the dataset. Transitioning into the core phase of predictive modeling, the workshop orchestrates a meticulous ensemble of machine learning models to forecast cervical cancer outcomes. The repertoire includes Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Gradient Boosting, Naïve Bayes, and the power of ensemble methods like AdaBoost and XGBoost. The models undergo rigorous hyperparameter tuning facilitated by Grid Search and Random Search to optimize predictive accuracy and precision. As the workshop progresses, the spotlight shifts to the realm of deep learning, introducing advanced neural network architectures. An Artificial Neural Network (ANN) featuring multiple hidden layers is trained using the backpropagation algorithm. Long Short-Term Memory (LSTM) networks are harnessed to capture intricate temporal relationships within the data. The arsenal extends to include Self Organizing Maps (SOMs), Restricted Boltzmann Machines (RBMs), and Autoencoders, showcasing the efficacy of unsupervised feature learning and dimensionality reduction techniques. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Culminating on a high note, the workshop concludes with the creation of a Python GUI utilizing PyQt. This intuitive graphical user interface empowers users to input pertinent medical data and receive instant predictions regarding their cervical cancer risk. Seamlessly integrating the most proficient classification model, this user-friendly interface bridges the gap between sophisticated data science techniques and practical healthcare applications. In this comprehensive workshop, participants navigate through the intricate landscape of data exploration, preprocessing, feature visualization, predictive modeling encompassing both traditional and deep learning paradigms, robust performance evaluation, and culminating in the development of an accessible and informative GUI. The project aspires to provide healthcare professionals and individuals with a potent tool for early cervical cancer detection and prognosis.

DATA SCIENCE WORKSHOP: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

DATA SCIENCE WORKSHOP: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
This book titled " Data Science Workshop: Cervical Cancer Classification and Prediction using Machine Learning and Deep Learning with Python GUI" embarks on an insightful journey starting with an in-depth exploration of the dataset. This dataset encompasses various features that shed light on patients' medical histories and attributes. Utilizing the capabilities of pandas, the dataset is loaded, and essential details like data dimensions, column names, and data types are scrutinized. The presence of missing data is addressed by employing suitable strategies such as mean-based imputation for numerical features and categorical encoding for non-numeric ones. Subsequently, the project delves into an illuminating visualization of categorized feature distributions. Through the ingenious use of pie charts, bar plots, and heatmaps, the project unveils the distribution patterns of key attributes such as 'Hormonal Contraceptives,' 'Smokes,' 'IUD,' and others. These visualizations illuminate potential relationships between these features and the target variable 'Biopsy,' which signifies the presence or absence of cervical cancer. Such exploratory analyses serve as a vital foundation for identifying influential trends within the dataset. Transitioning into the core phase of predictive modeling, the workshop orchestrates a meticulous ensemble of machine learning models to forecast cervical cancer outcomes. The repertoire includes Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Gradient Boosting, Naïve Bayes, and the power of ensemble methods like AdaBoost and XGBoost. The models undergo rigorous hyperparameter tuning facilitated by Grid Search and Random Search to optimize predictive accuracy and precision. As the workshop progresses, the spotlight shifts to the realm of deep learning, introducing advanced neural network architectures. An Artificial Neural Network (ANN) featuring multiple hidden layers is trained using the backpropagation algorithm. Long Short-Term Memory (LSTM) networks are harnessed to capture intricate temporal relationships within the data. The arsenal extends to include Self Organizing Maps (SOMs), Restricted Boltzmann Machines (RBMs), and Autoencoders, showcasing the efficacy of unsupervised feature learning and dimensionality reduction techniques. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Culminating on a high note, the workshop concludes with the creation of a Python GUI utilizing PyQt. This intuitive graphical user interface empowers users to input pertinent medical data and receive instant predictions regarding their cervical cancer risk. Seamlessly integrating the most proficient classification model, this user-friendly interface bridges the gap between sophisticated data science techniques and practical healthcare applications. In this comprehensive workshop, participants navigate through the intricate landscape of data exploration, preprocessing, feature visualization, predictive modeling encompassing both traditional and deep learning paradigms, robust performance evaluation, and culminating in the development of an accessible and informative GUI. The project aspires to provide healthcare professionals and individuals with a potent tool for early cervical cancer detection and prognosis.

DATA SCIENCE WORKSHOP: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

DATA SCIENCE WORKSHOP: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
In the captivating journey of our data science workshop, we embarked on the exploration of Chronic Kidney Disease classification and prediction. Our quest began with a thorough dive into data exploration, where we meticulously delved into the dataset's intricacies to unearth hidden patterns and insights. We analyzed the distribution of categorized features, unraveling the nuances that underlie chronic kidney disease. Guided by the principles of machine learning, we embarked on the quest to build predictive models. With the aid of grid search, we fine-tuned our machine learning algorithms, optimizing their hyperparameters for peak performance. Each model, whether K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Extreme Gradient Boosting, Light Gradient Boosting, or Multi-Layer Perceptron, was meticulously trained and tested, paving the way for robust predictions. The voyage into the realm of deep learning took us further, as we harnessed the power of Artificial Neural Networks (ANNs). By constructing intricate architectures, we designed ANNs to discern intricate patterns from the data. Leveraging the prowess of TensorFlow, we artfully crafted layers, each contributing to the ANN's comprehension of the underlying dynamics. This marked our initial foray into the world of deep learning. Our expedition, however, did not conclude with ANNs. We ventured deeper into the abyss of deep learning, uncovering the potential of Long Short-Term Memory (LSTM) networks. These networks, attuned to sequential data, unraveled temporal dependencies within the dataset, fortifying our predictive capabilities. Diving even further, we encountered Self-Organizing Maps (SOMs) and Restricted Boltzmann Machines (RBMs). These innovative models, rooted in unsupervised learning, unmasked underlying structures in the dataset. As our understanding of the data deepened, so did our repertoire of tools for prediction. Autoencoders, our final frontier in deep learning, emerged as our champions in dimensionality reduction and feature learning. These unsupervised neural networks transformed complex data into compact, meaningful representations, guiding our predictive models with newfound efficiency. To furnish a granular understanding of model behavior, we employed the classification report, which delineated precision, recall, and F1-Score for each class, providing a comprehensive snapshot of the model's predictive capacity across diverse categories. The confusion matrix emerged as a tangible visualization, detailing the interplay between true positives, true negatives, false positives, and false negatives. We also harnessed ROC and precision-recall curves to illuminate the dynamic interplay between true positive rate and false positive rate, vital when tackling imbalanced datasets. For regression tasks, MSE and its counterpart RMSE quantified the average squared differences between predictions and actual values, facilitating an insightful assessment of model fit. Further enhancing our toolkit, the R-squared (R2) score unveiled the extent to which the model explained variance in the dependent variable, offering a valuable gauge of overall performance. Collectively, this ensemble of metrics enabled us to make astute model decisions, optimize hyperparameters, and gauge the models' fitness for accurate disease prognosis in a clinical context. Amidst this whirlwind of data exploration and model construction, our GUI using PyQt emerged as a beacon of user-friendly interaction. Through its intuitive interface, users navigated seamlessly between model selection, training, and prediction. Our GUI encapsulated the intricacies of our journey, bridging the gap between data science and user experience. In the end, our odyssey illuminated the intricate landscape of Chronic Kidney Disease classification and prediction. We harnessed the power of both machine learning and deep learning, uncovering hidden insights and propelling our predictive capabilities to new heights. Our journey transcended the realms of data, algorithms, and interfaces, leaving an indelible mark on the crossroads of science and innovation.

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1574

Get Book Here

Book Description
Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Natural Language Processing Recipes

Natural Language Processing Recipes PDF Author: Akshay Kulkarni
Publisher: Apress
ISBN: 148424267X
Category : Computers
Languages : en
Pages : 253

Get Book Here

Book Description
Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will LearnApply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.

Hands-On Data Science and Python Machine Learning

Hands-On Data Science and Python Machine Learning PDF Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.

Introducing Data Science

Introducing Data Science PDF Author: Davy Cielen
Publisher: Simon and Schuster
ISBN: 1638352496
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis PDF Author: Gobert Lee
Publisher: Springer Nature
ISBN: 3030331288
Category : Medical
Languages : en
Pages : 184

Get Book Here

Book Description
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing PDF Author: Le Lu
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327

Get Book Here

Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Leveraging Data Science for Global Health

Leveraging Data Science for Global Health PDF Author: Leo Anthony Celi
Publisher: Springer Nature
ISBN: 3030479943
Category : Medical
Languages : en
Pages : 471

Get Book Here

Book Description
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.

Data Analytics and Applications of the Wearable Sensors in Healthcare

Data Analytics and Applications of the Wearable Sensors in Healthcare PDF Author: Shabbir Syed-Abdul
Publisher: MDPI
ISBN: 3039363506
Category : Medical
Languages : en
Pages : 498

Get Book Here

Book Description
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.