Author: Deepak P
Publisher: Springer Nature
ISBN: 3030626962
Category : Computers
Languages : en
Pages : 308
Book Description
This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.
Data Science for Fake News
Author: Deepak P
Publisher: Springer Nature
ISBN: 3030626962
Category : Computers
Languages : en
Pages : 308
Book Description
This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.
Publisher: Springer Nature
ISBN: 3030626962
Category : Computers
Languages : en
Pages : 308
Book Description
This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.
Detecting Fake News on Social Media
Author: Kai Shu
Publisher: Morgan & Claypool Publishers
ISBN: 1681735830
Category : Computers
Languages : en
Pages : 131
Book Description
This book is an accessible introduction to the study of detecting fake news on social media. The concepts, algorithms, and methods described in this book can help harness the power of social media to build effective and intelligent fake news detection systems. In the past decade, social media is becoming increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. From a data mining perspective, this book introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates advanced settings of fake news detection on social media. In particular, the authors discuss the value of news content and social context, as well as important extensions to handle early detection, weakly-supervised detection, and explainable detection. This is essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms.
Publisher: Morgan & Claypool Publishers
ISBN: 1681735830
Category : Computers
Languages : en
Pages : 131
Book Description
This book is an accessible introduction to the study of detecting fake news on social media. The concepts, algorithms, and methods described in this book can help harness the power of social media to build effective and intelligent fake news detection systems. In the past decade, social media is becoming increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. From a data mining perspective, this book introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates advanced settings of fake news detection on social media. In particular, the authors discuss the value of news content and social context, as well as important extensions to handle early detection, weakly-supervised detection, and explainable detection. This is essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms.
Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance
Author: Rana, Dipti P.
Publisher: IGI Global
ISBN: 1799873730
Category : Computers
Languages : en
Pages : 309
Book Description
Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.
Publisher: IGI Global
ISBN: 1799873730
Category : Computers
Languages : en
Pages : 309
Book Description
Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.
The Psychology of Fake News
Author: Rainer Greifeneder
Publisher: Routledge
ISBN: 1000179052
Category : Language Arts & Disciplines
Languages : en
Pages : 232
Book Description
This volume examines the phenomenon of fake news by bringing together leading experts from different fields within psychology and related areas, and explores what has become a prominent feature of public discourse since the first Brexit referendum and the 2016 US election campaign. Dealing with misinformation is important in many areas of daily life, including politics, the marketplace, health communication, journalism, education, and science. In a general climate where facts and misinformation blur, and are intentionally blurred, this book asks what determines whether people accept and share (mis)information, and what can be done to counter misinformation? All three of these aspects need to be understood in the context of online social networks, which have fundamentally changed the way information is produced, consumed, and transmitted. The contributions within this volume summarize the most up-to-date empirical findings, theories, and applications and discuss cutting-edge ideas and future directions of interventions to counter fake news. Also providing guidance on how to handle misinformation in an age of “alternative facts”, this is a fascinating and vital reading for students and academics in psychology, communication, and political science and for professionals including policy makers and journalists.
Publisher: Routledge
ISBN: 1000179052
Category : Language Arts & Disciplines
Languages : en
Pages : 232
Book Description
This volume examines the phenomenon of fake news by bringing together leading experts from different fields within psychology and related areas, and explores what has become a prominent feature of public discourse since the first Brexit referendum and the 2016 US election campaign. Dealing with misinformation is important in many areas of daily life, including politics, the marketplace, health communication, journalism, education, and science. In a general climate where facts and misinformation blur, and are intentionally blurred, this book asks what determines whether people accept and share (mis)information, and what can be done to counter misinformation? All three of these aspects need to be understood in the context of online social networks, which have fundamentally changed the way information is produced, consumed, and transmitted. The contributions within this volume summarize the most up-to-date empirical findings, theories, and applications and discuss cutting-edge ideas and future directions of interventions to counter fake news. Also providing guidance on how to handle misinformation in an age of “alternative facts”, this is a fascinating and vital reading for students and academics in psychology, communication, and political science and for professionals including policy makers and journalists.
Journalism, fake news & disinformation
Author: Ireton, Cherilyn
Publisher: UNESCO Publishing
ISBN: 9231002813
Category : Fake news
Languages : en
Pages : 128
Book Description
Publisher: UNESCO Publishing
ISBN: 9231002813
Category : Fake news
Languages : en
Pages : 128
Book Description
Graph Mining
Author: Deepayan Chakrabarti
Publisher: Springer Nature
ISBN: 3031019032
Category : Computers
Languages : en
Pages : 191
Book Description
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions
Publisher: Springer Nature
ISBN: 3031019032
Category : Computers
Languages : en
Pages : 191
Book Description
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions
Confluence of AI, Machine, and Deep Learning in Cyber Forensics
Author: Misra, Sanjay
Publisher: IGI Global
ISBN: 1799849015
Category : Law
Languages : en
Pages : 248
Book Description
Developing a knowledge model helps to formalize the difficult task of analyzing crime incidents in addition to preserving and presenting the digital evidence for legal processing. The use of data analytics techniques to collect evidence assists forensic investigators in following the standard set of forensic procedures, techniques, and methods used for evidence collection and extraction. Varieties of data sources and information can be uniquely identified, physically isolated from the crime scene, protected, stored, and transmitted for investigation using AI techniques. With such large volumes of forensic data being processed, different deep learning techniques may be employed. Confluence of AI, Machine, and Deep Learning in Cyber Forensics contains cutting-edge research on the latest AI techniques being used to design and build solutions that address prevailing issues in cyber forensics and that will support efficient and effective investigations. This book seeks to understand the value of the deep learning algorithm to handle evidence data as well as the usage of neural networks to analyze investigation data. Other themes that are explored include machine learning algorithms that allow machines to interact with the evidence, deep learning algorithms that can handle evidence acquisition and preservation, and techniques in both fields that allow for the analysis of huge amounts of data collected during a forensic investigation. This book is ideally intended for forensics experts, forensic investigators, cyber forensic practitioners, researchers, academicians, and students interested in cyber forensics, computer science and engineering, information technology, and electronics and communication.
Publisher: IGI Global
ISBN: 1799849015
Category : Law
Languages : en
Pages : 248
Book Description
Developing a knowledge model helps to formalize the difficult task of analyzing crime incidents in addition to preserving and presenting the digital evidence for legal processing. The use of data analytics techniques to collect evidence assists forensic investigators in following the standard set of forensic procedures, techniques, and methods used for evidence collection and extraction. Varieties of data sources and information can be uniquely identified, physically isolated from the crime scene, protected, stored, and transmitted for investigation using AI techniques. With such large volumes of forensic data being processed, different deep learning techniques may be employed. Confluence of AI, Machine, and Deep Learning in Cyber Forensics contains cutting-edge research on the latest AI techniques being used to design and build solutions that address prevailing issues in cyber forensics and that will support efficient and effective investigations. This book seeks to understand the value of the deep learning algorithm to handle evidence data as well as the usage of neural networks to analyze investigation data. Other themes that are explored include machine learning algorithms that allow machines to interact with the evidence, deep learning algorithms that can handle evidence acquisition and preservation, and techniques in both fields that allow for the analysis of huge amounts of data collected during a forensic investigation. This book is ideally intended for forensics experts, forensic investigators, cyber forensic practitioners, researchers, academicians, and students interested in cyber forensics, computer science and engineering, information technology, and electronics and communication.
Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Author: Thomas, J. Joshua
Publisher: IGI Global
ISBN: 1799811948
Category : Computers
Languages : en
Pages : 355
Book Description
Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Publisher: IGI Global
ISBN: 1799811948
Category : Computers
Languages : en
Pages : 355
Book Description
Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
How Algorithms Create and Prevent Fake News
Author: Noah Giansiracusa
Publisher: Apress
ISBN: 9781484271544
Category : Computers
Languages : en
Pages : 235
Book Description
From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell what’s real and what’s not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning---especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and what’s at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias – which gets amplified in harmful data feedback loops. Don’t be afraid: with this book you’ll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope. What You Will Learn The ways that data labeling and storage impact machine learning and how feedback loops can occur The history and inner-workings of YouTube’s recommendation algorithm The state-of-the-art capabilities of AI-powered text generation (GPT-3) and video synthesis/doctoring (deepfakes) and how these technologies have been used so far The algorithmic tools available to help with automated fact-checking and truth-detection Who This Book is For People who don’t have a technical background (in data, computers, etc.) but who would like to learn how algorithms impact society; business leaders who want to know the powers and perils of relying on artificial intelligence. A secondary audience is people with a technical background who want to explore the larger social and societal impact of their work.
Publisher: Apress
ISBN: 9781484271544
Category : Computers
Languages : en
Pages : 235
Book Description
From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell what’s real and what’s not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning---especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and what’s at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias – which gets amplified in harmful data feedback loops. Don’t be afraid: with this book you’ll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope. What You Will Learn The ways that data labeling and storage impact machine learning and how feedback loops can occur The history and inner-workings of YouTube’s recommendation algorithm The state-of-the-art capabilities of AI-powered text generation (GPT-3) and video synthesis/doctoring (deepfakes) and how these technologies have been used so far The algorithmic tools available to help with automated fact-checking and truth-detection Who This Book is For People who don’t have a technical background (in data, computers, etc.) but who would like to learn how algorithms impact society; business leaders who want to know the powers and perils of relying on artificial intelligence. A secondary audience is people with a technical background who want to explore the larger social and societal impact of their work.
Navigating Fake News, Alternative Facts, and Misinformation in a Post-Truth World
Author: Dalkir, Kimiz
Publisher: IGI Global
ISBN: 1799825450
Category : Language Arts & Disciplines
Languages : en
Pages : 375
Book Description
In the current day and age, objective facts have less influence on opinions and decisions than personal emotions and beliefs. Many individuals rely on their social networks to gather information thanks to social media’s ability to share information rapidly and over a much greater geographic range. However, this creates an overall false balance as people tend to seek out information that is compatible with their existing views and values. They deliberately seek out “facts” and data that specifically support their conclusions and classify any information that contradicts their beliefs as “false news.” Navigating Fake News, Alternative Facts, and Misinformation in a Post-Truth World is a collection of innovative research on human and automated methods to deter the spread of misinformation online, such as legal or policy changes, information literacy workshops, and algorithms that can detect fake news dissemination patterns in social media. While highlighting topics including source credibility, share culture, and media literacy, this book is ideally designed for social media managers, technology and software developers, IT specialists, educators, columnists, writers, editors, journalists, broadcasters, newscasters, researchers, policymakers, and students.
Publisher: IGI Global
ISBN: 1799825450
Category : Language Arts & Disciplines
Languages : en
Pages : 375
Book Description
In the current day and age, objective facts have less influence on opinions and decisions than personal emotions and beliefs. Many individuals rely on their social networks to gather information thanks to social media’s ability to share information rapidly and over a much greater geographic range. However, this creates an overall false balance as people tend to seek out information that is compatible with their existing views and values. They deliberately seek out “facts” and data that specifically support their conclusions and classify any information that contradicts their beliefs as “false news.” Navigating Fake News, Alternative Facts, and Misinformation in a Post-Truth World is a collection of innovative research on human and automated methods to deter the spread of misinformation online, such as legal or policy changes, information literacy workshops, and algorithms that can detect fake news dissemination patterns in social media. While highlighting topics including source credibility, share culture, and media literacy, this book is ideally designed for social media managers, technology and software developers, IT specialists, educators, columnists, writers, editors, journalists, broadcasters, newscasters, researchers, policymakers, and students.