Author: Peter Štarchoň
Publisher: Springer Nature
ISBN: 3031608151
Category :
Languages : en
Pages : 385
Book Description
Data-Centric Business and Applications
Author: Peter Štarchoň
Publisher: Springer Nature
ISBN: 3031608151
Category :
Languages : en
Pages : 385
Book Description
Publisher: Springer Nature
ISBN: 3031608151
Category :
Languages : en
Pages : 385
Book Description
Data-Centric Business and Applications
Author: Andriy Semenov
Publisher: Springer Nature
ISBN: 3031539842
Category :
Languages : en
Pages : 434
Book Description
Publisher: Springer Nature
ISBN: 3031539842
Category :
Languages : en
Pages : 434
Book Description
Data-Centric Business and Applications
Author: Tamara Radivilova
Publisher: Springer Nature
ISBN: 3030430707
Category : Technology & Engineering
Languages : en
Pages : 789
Book Description
This book addresses the challenges and opportunities of information/data processing and management. It also covers a range of methods, techniques and strategies for making it more efficient, approaches to increasing its usage, and ways to minimize information/data loss while improving customer satisfaction. Information and Communication Technologies (ICTs) and the Service Systems associated with them have had an enormous impact on businesses and our day-to-day lives over the past three decades, and continue to do so. This development has led to the emergence of new application areas and relevant disciplines, which in turn present new challenges and opportunities for service system usage. The book provides practical insights into various aspects of ICT technologies for service systems: Techniques for information/data processing and modeling in service systems Strategies for the provision of information/data processing and management Methods for collecting and analyzing information/data Applications, benefits, and challenges of service system implementation Solutions to increase the performance of various service systems using the latest ICT technologies
Publisher: Springer Nature
ISBN: 3030430707
Category : Technology & Engineering
Languages : en
Pages : 789
Book Description
This book addresses the challenges and opportunities of information/data processing and management. It also covers a range of methods, techniques and strategies for making it more efficient, approaches to increasing its usage, and ways to minimize information/data loss while improving customer satisfaction. Information and Communication Technologies (ICTs) and the Service Systems associated with them have had an enormous impact on businesses and our day-to-day lives over the past three decades, and continue to do so. This development has led to the emergence of new application areas and relevant disciplines, which in turn present new challenges and opportunities for service system usage. The book provides practical insights into various aspects of ICT technologies for service systems: Techniques for information/data processing and modeling in service systems Strategies for the provision of information/data processing and management Methods for collecting and analyzing information/data Applications, benefits, and challenges of service system implementation Solutions to increase the performance of various service systems using the latest ICT technologies
Data-Centric Business and Applications
Author: Natalia Kryvinska
Publisher: Springer
ISBN: 3319941178
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This book discusses processes and procedures in information/data processing and management. The global market is becoming more and more complex with an increased availability of data and information, and as a result doing business with information is becoming more popular, with a significant impact on modern society immensely. This means that there is a growing need for a common understanding of how to create, access, use and manage business information. As such this book explores different aspects of data and information processing, including information generation, representation, structuring, organization, storage, retrieval, navigation, human factors in information systems, and the use of information. It also analyzes the challenges and opportunities of doing business with information, and presents various perspectives on business information managing.
Publisher: Springer
ISBN: 3319941178
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This book discusses processes and procedures in information/data processing and management. The global market is becoming more and more complex with an increased availability of data and information, and as a result doing business with information is becoming more popular, with a significant impact on modern society immensely. This means that there is a growing need for a common understanding of how to create, access, use and manage business information. As such this book explores different aspects of data and information processing, including information generation, representation, structuring, organization, storage, retrieval, navigation, human factors in information systems, and the use of information. It also analyzes the challenges and opportunities of doing business with information, and presents various perspectives on business information managing.
Data-Centric Business and Applications
Author: Dmytro Ageyev
Publisher: Springer Nature
ISBN: 3030356493
Category : Computers
Languages : en
Pages : 233
Book Description
Building on the authors’ previous work, this book addresses key processes and procedures used in information/data processing and management. Modern methods of business information processing, which draw on artificial intelligence, big data, and cloud-based storage and processing, are opening exciting new opportunities for doing business on the basis of information technologies. Thus, in this third book, the authors continue to explore various aspects – technological as well as business and social – of the information industries. Further, they analyze the challenges and opportunities entailed by these kinds of business.
Publisher: Springer Nature
ISBN: 3030356493
Category : Computers
Languages : en
Pages : 233
Book Description
Building on the authors’ previous work, this book addresses key processes and procedures used in information/data processing and management. Modern methods of business information processing, which draw on artificial intelligence, big data, and cloud-based storage and processing, are opening exciting new opportunities for doing business on the basis of information technologies. Thus, in this third book, the authors continue to explore various aspects – technological as well as business and social – of the information industries. Further, they analyze the challenges and opportunities entailed by these kinds of business.
Data-Centric Business and Applications
Author: Aneta Poniszewska-Marańda
Publisher: Springer Nature
ISBN: 3030347060
Category : Computers
Languages : en
Pages : 270
Book Description
This book explores various aspects of software creation and development as well as data and information processing. It covers relevant topics such as business analysis, business rules, requirements engineering, software development processes, software defect prediction, information management systems, and knowledge management solutions. Lastly, the book presents lessons learned in information and data management processes and procedures.
Publisher: Springer Nature
ISBN: 3030347060
Category : Computers
Languages : en
Pages : 270
Book Description
This book explores various aspects of software creation and development as well as data and information processing. It covers relevant topics such as business analysis, business rules, requirements engineering, software development processes, software defect prediction, information management systems, and knowledge management solutions. Lastly, the book presents lessons learned in information and data management processes and procedures.
Fundamentals of Business Intelligence
Author: Wilfried Grossmann
Publisher: Springer
ISBN: 3662465310
Category : Computers
Languages : en
Pages : 361
Book Description
This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
Publisher: Springer
ISBN: 3662465310
Category : Computers
Languages : en
Pages : 361
Book Description
This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
Data Matching
Author: Peter Christen
Publisher: Springer Science & Business Media
ISBN: 3642311644
Category : Computers
Languages : en
Pages : 279
Book Description
Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.
Publisher: Springer Science & Business Media
ISBN: 3642311644
Category : Computers
Languages : en
Pages : 279
Book Description
Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.
Security, Privacy, and Trust in Modern Data Management
Author: Milan Petkovic
Publisher: Springer Science & Business Media
ISBN: 3540698612
Category : Computers
Languages : en
Pages : 467
Book Description
The vision of ubiquitous computing and ambient intelligence describes a world of technology which is present anywhere, anytime in the form of smart, sensible devices that communicate with each other and provide personalized services. However, open interconnected systems are much more vulnerable to attacks and unauthorized data access. In the context of this threat, this book provides a comprehensive guide to security and privacy and trust in data management.
Publisher: Springer Science & Business Media
ISBN: 3540698612
Category : Computers
Languages : en
Pages : 467
Book Description
The vision of ubiquitous computing and ambient intelligence describes a world of technology which is present anywhere, anytime in the form of smart, sensible devices that communicate with each other and provide personalized services. However, open interconnected systems are much more vulnerable to attacks and unauthorized data access. In the context of this threat, this book provides a comprehensive guide to security and privacy and trust in data management.
Data Warehousing and Analytics
Author: David Taniar
Publisher: Springer Nature
ISBN: 3030819795
Category : Computers
Languages : en
Pages : 642
Book Description
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
Publisher: Springer Nature
ISBN: 3030819795
Category : Computers
Languages : en
Pages : 642
Book Description
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.