Author: Olivier Sauter
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400
Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.
Theory of Fusion Plasmas
Author: Olivier Sauter
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400
Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400
Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.
Transport Processes in Plasmas: Classical transport
Author: Radu Balescu
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 378
Book Description
Existing textbooks on plasma physics usually contain only a minor contribution devoted to plasma transport. The aim of Transport Processes in Plasmas'' is to provide a comprehensive and unified presentation of the transport theory in plasmas. This subject is of great importance in general statistical and plasma physics; moreover, it constitutes a keystone in the thermonuclear fusion programme as well as in astro- and geophysics. The subject is presented here by unified concepts, methods and notations. The contents are strongly embedded in a general framework of theoretical physics, appealing to modern Hamiltonian mechanics, kinetic theory, non-equilibrium thermodynamics, etc. The necessary concepts from these disciplines are briefly but completely explained, making the two volumes a self-contained text. Plasma transport theory can be characterised as a truly interdisciplinary activity, and several chapters are included containing the important concepts of these peripheral fields, briefly and completely. Many new features are introduced in those two volumes.
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 378
Book Description
Existing textbooks on plasma physics usually contain only a minor contribution devoted to plasma transport. The aim of Transport Processes in Plasmas'' is to provide a comprehensive and unified presentation of the transport theory in plasmas. This subject is of great importance in general statistical and plasma physics; moreover, it constitutes a keystone in the thermonuclear fusion programme as well as in astro- and geophysics. The subject is presented here by unified concepts, methods and notations. The contents are strongly embedded in a general framework of theoretical physics, appealing to modern Hamiltonian mechanics, kinetic theory, non-equilibrium thermodynamics, etc. The necessary concepts from these disciplines are briefly but completely explained, making the two volumes a self-contained text. Plasma transport theory can be characterised as a truly interdisciplinary activity, and several chapters are included containing the important concepts of these peripheral fields, briefly and completely. Many new features are introduced in those two volumes.
Fusion Nucléaire
Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 688
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 688
Book Description
Collisional Transport in Magnetized Plasmas
Author: Per Helander
Publisher: Cambridge University Press
ISBN: 9780521020985
Category : Science
Languages : en
Pages : 316
Book Description
A graduate level text treating transport theory, an essential element of theoretical plasma physics.
Publisher: Cambridge University Press
ISBN: 9780521020985
Category : Science
Languages : en
Pages : 316
Book Description
A graduate level text treating transport theory, an essential element of theoretical plasma physics.
Controlled Fusion and Plasma Physics
Author: Kenro Miyamoto
Publisher: CRC Press
ISBN: 9781584887096
Category : Science
Languages : en
Pages : 424
Book Description
Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.
Publisher: CRC Press
ISBN: 9781584887096
Category : Science
Languages : en
Pages : 424
Book Description
Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.
Electric Potential in Toroidal Plasmas
Author: A.V. Melnikov
Publisher: Springer
ISBN: 303003481X
Category : Science
Languages : en
Pages : 253
Book Description
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L–H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfvén Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
Publisher: Springer
ISBN: 303003481X
Category : Science
Languages : en
Pages : 253
Book Description
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L–H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfvén Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1334
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1334
Book Description
Stellarator and Heliotron Devices
Author: Masahiro Wakatani
Publisher: Oxford University Press, USA
ISBN: 9780195078312
Category : Language Arts & Disciplines
Languages : ko
Pages : 462
Book Description
This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.
Publisher: Oxford University Press, USA
ISBN: 9780195078312
Category : Language Arts & Disciplines
Languages : ko
Pages : 462
Book Description
This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.
Advanced Magnetohydrodynamics
Author: J. P. Goedbloed
Publisher: Cambridge University Press
ISBN: 1139487280
Category : Science
Languages : en
Pages : 651
Book Description
Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.
Publisher: Cambridge University Press
ISBN: 1139487280
Category : Science
Languages : en
Pages : 651
Book Description
Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.
Plasma Physics
Author: Alexander Piel
Publisher: Springer
ISBN: 9783319875538
Category : Science
Languages : en
Pages : 463
Book Description
The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.
Publisher: Springer
ISBN: 9783319875538
Category : Science
Languages : en
Pages : 463
Book Description
The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.