Damping Characteristics of Corrosion Damage Reinforced Concrete Beam

Damping Characteristics of Corrosion Damage Reinforced Concrete Beam PDF Author: Yong Daniel
Publisher:
ISBN:
Category :
Languages : en
Pages : 232

Get Book Here

Book Description

Damping Characteristics of Corrosion Damage Reinforced Concrete Beam

Damping Characteristics of Corrosion Damage Reinforced Concrete Beam PDF Author: Yong Daniel
Publisher:
ISBN:
Category :
Languages : en
Pages : 232

Get Book Here

Book Description


Damping Characteristics of Reinforced and Prestressed Normal- and High-strength Concrete Beams

Damping Characteristics of Reinforced and Prestressed Normal- and High-strength Concrete Beams PDF Author: Angela Salzmann
Publisher:
ISBN:
Category : Concrete beams
Languages : en
Pages :

Get Book Here

Book Description
Abstract: In the last few decades there has been a significant increase in the design strength and performance of different building materials. In particular, new methods, materials and admixtures for the production of concrete have allowed for strengths as high as 100 MPa to be readily available. In addition, the standard manufactured yield strength of reinforcing steel in Australia has increased from 400 MPa to 500 MPa. -- A perceived design advantage of higher-strength materials is that structural elements can have longer spans and be more slender than previously possible. An emerging problem with slender concrete members is that they can be more vulnerable to loading induced vibration. The damping capacity is an inherent fundamental quantity of all structural concrete members that affects their vibrational response. It is defined as the rate at which a structural member can dissipate the vibrational energy imparted to it. -- Generally damping capacity measurements, to indicate the integrity of structural members, are taken once the structure is in service. This type of non-destructive testing has been the subject of much research. The published non-destructive testing research on damping capacity is conflicting and a unified method to describe the effect of damage on damping capacity has not yet been proposed. -- Significantly, there is not one method in the published literature or national design codes, including the Australian Standard AS 3600-2001, available to predict the damping capacity of concrete beam members at the design stage. Further, little research has implemented full-scale testing with a view to developing damping capacity design equations, which is the primary focus of this thesis. -- To examine the full-range damping behaviour of concrete beams, two categories of testing were proposed. The categories are the 'untested' and 'tested' beam states. These beam states have not been separately investigated in previous work and are considered a major shortcoming of previous research on the damping behaviour of concrete beams. -- An extensive experimental programme was undertaken to obtain residual deflection and damping capacity data for thirty-one reinforced and ten prestressed concrete beams. The concrete beams had compressive strengths ranging between 23.1 MPa and 90.7 MPa, reinforcement with yield strengths of 400 MPa or 500 MPa, and tensile reinforcement ratios between 0.76% and 2.90%. The full- and half-scale beams tested had lengths of 6.0 m and 2.4 m, respectively. The testing regime consisted of a series of on-off load increments, increasing until failure, designed to induce residual deflections with increasing amounts of internal damage at which damping capacity (logarithmic decrement) was measured. -- The inconsistencies that were found between the experimental damping capacity of the beams and previous research prompted an initial investigation into the data obtained. It was found that the discrepancies were due to the various interpretations of the method used to extract damping capacity from the free-vibration decay curve. Therefore, a logarithmic decrement calculation method was proposed to ensure consistency and accuracy of the extracted damping capacity data to be used in the subsequent analytical research phase. -- The experimental test data confirmed that the 'untested' damping capacity of reinforced concrete beams is dependent upon the beam reinforcement ratio and distribution. This quantity was termed the total longitudinal reinforcement distribution. For the prestressed concrete beams, the 'untested' damping capacity was shown to be proportional to the product of the prestressing force and prestressing eccentricity. Separate 'untested' damping capacity equations for reinforced and prestressed concrete beams were developed to reflect these quantities. -- To account for the variation in damping capacity due to damage in 'tested' beams, a residual deflection mechanism was utilised. The proposed residual deflection mechanism estimates the magnitude of permanent deformation in the beam and attempts to overcome traditional difficulties in calculating the damping capacity during low loading levels. Residual deflection equations, based on the instantaneous deflection data for the current experimental programme, were proposed for both the reinforced and prestressed concrete beams, which in turn were utilised with the proposed 'untested' damping equation to calculate the total damping capacity. -- The proposed 'untested' damping, residual deflection and total damping capacity equations were compared to published test data and an additional series of test beams. These verification investigations have shown that the proposed equations are reliable and applicable for a range of beam designs, test setups, constituent materials and loading regimes.

Damping Characteristics of Reinforced and Partially Prestressed Concrete Beams

Damping Characteristics of Reinforced and Partially Prestressed Concrete Beams PDF Author: Sanaul Huq Chowdhury
Publisher:
ISBN:
Category : Concrete beams
Languages : en
Pages :

Get Book Here

Book Description
Abstract: Advances in construction materials and computational methods have made it possible to design and construct taller masts, buildings with increasingly slender frames, and bridges (and roof structures) with ever larger spans. In addition, masts, towers and new forms of construction such as offshore structures are being built in more hostile environments than previously contemplated. These evolving structures which keep extending the boundary of "normal" designs require that the designers take into account vibration of structures at the design stage to a much greater extent than they have done in the past. -- The slenderness of modern structures and the large magnitude of the loads that many of them must carry also make it imperative that such structures be designed for stresses induced by dynamic disturbances. The response of a structure to a dynamically applied load may be many times greater than its response to the same load applied statically. The relationship between a structure's static and dynamic responses depends primarily on its damping characteristics and on its natural periods of vibration. In fact, damping is one of the most significant contributors to the dynamic response of high-rise buildings, bridges, tall chimneys and other slender structures considered to be significantly affected by dynamic forces. -- Under a severe lateral dynamic loading condition, the structure that is likely to survive is one whose members are sufficiently ductile to absorb and dissipate energy by elastic and/or inelastic deformation. This requires the designer to realistically assess the possible levels of strength in flexural and shear elements. Thus, in designing such a concrete structure, it is important to understand and determine the ability of the structure to absorb energy under an external impulsive force. At this stage, information in this regard is lacking in published literature and the ability of the constituent elements of the structure to absorb energy is not well understood. This, for example, is true for reinforced and partially prestressed concrete beam, especially the cracked ones. In particular, no simple and accurate formulae are available to evaluate the damping ratios of reinforced and partially prestressed concrete beams cracked or otherwise, for use in the dynamic design of civil engineering structures. It is this area which forms the primary focus of this research. -- In this research, an extensive test programme has been carried out to study the cracking and damping behaviour of reinforced and partially prestressed concrete beams. The tests were carried out in two stages and involved a total of 30 reinforced and partially prestressed beams. Nine reinforced and 12 partially prestressed simply supported full-size box beams were tested at the first stage. Tested at the second stage were 2 simply supported and 3 two-equal span continuous reinforced full-size box beams and 4 solid rectangular full-size simply supported reinforced beams. For all the beams, at each level of loading, measurements were made of instantaneous and residual crack widths, instantaneous and residual concrete strains, and mid-span deflections. Each beam was also subjected to free vibration tests to measure its logarithmic decrement of damping corresponding to each load level. -- Based on the experimental results, two empirical formulae have been developed for predicting logarithmic decrement of damping separately in reinforced and partially prestressed concrete beams. These formulae predict damping from the residual crack widths of the beams. For these formulae to be of practical use, a formula relating the residual crack widths of concrete beams to the instantaneous average crack widths was developed. In addition, a unified formula was derived for the prediction of the instantaneous average crack widths based on the general beam parameters. As an alternative, separate formulae are also presented for predicting residual crack widths using mid-span deflections of reinforced and partially prestressed beams. These further enhance the practicability of the proposed damping formulae. -- In an effort to verify the accuracy and reliability of the proposed formulae, comparative studies are carried out based on the author's own laboratory test results as well as those available in published literature. In total, 104 full-size reinforced and prestressed concrete solid and box beams are involved in the comparative study. In general, good correlations are obtained for instantaneous and residual average crack widths and for logarithmic decrement of damping values. These are true for both reinforced and partially prestressed concrete beams.

ICSBE 2022

ICSBE 2022 PDF Author: Ranjith Dissanayake
Publisher: Springer Nature
ISBN: 9819934710
Category : Architecture
Languages : en
Pages : 867

Get Book Here

Book Description
This book highlights the latest knowledge and innovations in the fields of civil engineering and construction industry striving for a sustainable built environment. It consists of high quality and innovative research findings selected from the proceedings of the 13th ICSBE 2022 under the themes of sustainable construction, urban green infrastructure and planning, rainwater harvesting and water conservation, high-performance concrete, indoor environmental quality and indoor plants, wind and hydro-power energy, waste and wastewater management for enhanced sustainability, impacts of climate change, carbon footprint, global climate model and landscaping, material flows and industrial ecology, sustainable materials, etc.

Innovation, Communication and Engineering

Innovation, Communication and Engineering PDF Author: Teen-Hang Meen
Publisher: CRC Press
ISBN: 1138001201
Category : Computers
Languages : en
Pages : 2334

Get Book Here

Book Description
This volume represents the proceedings of the 2013 International Conference on Innovation, Communication and Engineering (ICICE 2013). This conference was organized by the China University of Petroleum (Huadong/East China) and the Taiwanese Institute of Knowledge Innovation, and was held in Qingdao, Shandong, P.R. China, October 26 - November 1, 2013. The conference received 653 submitted papers from 10 countries, of which 214 papers were selected by the committees to be presented at ICICE 2013. The conference provided a unified communication platform for researchers in a wide range of fields from information technology, communication science, and applied mathematics, to computer science, advanced material science, design and engineering. This volume enables interdisciplinary collaboration between science and engineering technologists in academia and industry as well as networking internationally. Consists of a book of abstracts (260 pp.) and a USB flash card with full papers (912 pp.).

Devítidenní pobožnost K Panně Marii

Devítidenní pobožnost K Panně Marii PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description


Seismic Performance of Corroded Reinforced Concrete Structures Retrofitted with FRP

Seismic Performance of Corroded Reinforced Concrete Structures Retrofitted with FRP PDF Author: Dejian Shen
Publisher: Springer Nature
ISBN: 9819979846
Category :
Languages : en
Pages : 394

Get Book Here

Book Description


Nondestructive Testing of Materials and Structures

Nondestructive Testing of Materials and Structures PDF Author: Oral Büyüköztürk
Publisher: Springer Science & Business Media
ISBN: 9400707231
Category : Technology & Engineering
Languages : en
Pages : 1231

Get Book Here

Book Description
Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectrum are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state of the art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future research directions to overcome the challenges in their development and practical use. In this respect, the contents of this book will equally benefit practicing engineers and researchers who take part in characterization, assessment and health monitoring of materials and structures.

Corrosion Damage to Concrete Structures in Western Asia

Corrosion Damage to Concrete Structures in Western Asia PDF Author:
Publisher: UN-HABITAT
ISBN: 9789211311228
Category : Concrete
Languages : en
Pages : 44

Get Book Here

Book Description


Progress in the Analysis and Design of Marine Structures

Progress in the Analysis and Design of Marine Structures PDF Author: Carlos Guedes Soares
Publisher: CRC Press
ISBN: 1351653415
Category : Technology & Engineering
Languages : en
Pages : 952

Get Book Here

Book Description
Progress in the Analysis and Design of Marine Structures collects the contributions presented at MARSTRUCT 2017, the 6th International Conference on Marine Structures (Lisbon, Portugal, 8-10 May 2017). The MARSTRUCT series of Conferences started in Glasgow, UK in 2007, the second event of the series having taken place in Lisbon, Portugal in March 2009, the third in Hamburg, Germany in March 2011, the fourth in Espoo, Finland in March 2013, and the fifth in Southampton, UK in March 2015. This Conference series deals with Ship and Offshore Structures, addressing topics in the areas of: - Methods and Tools for Loads and Load Effects - Methods and Tools for Strength Assessment - Experimental Analysis of Structures - Materials and Fabrication of Structures - Methods and Tools for Structural Design and Optimisation, and - Structural Reliability, Safety and Environmental Protection Progress in the Analysis and Design of Marine Structures is essential reading for academics, engineers and all professionals involved in the design of marine and offshore structures.