Author: K. Dosen
Publisher: Springer Science & Business Media
ISBN: 9401712077
Category : Philosophy
Languages : en
Pages : 240
Book Description
Proof theory and category theory were first drawn together by Lambek some 30 years ago but, until now, the most fundamental notions of category theory (as opposed to their embodiments in logic) have not been explained systematically in terms of proof theory. Here it is shown that these notions, in particular the notion of adjunction, can be formulated in such as way as to be characterised by composition elimination. Among the benefits of these composition-free formulations are syntactical and simple model-theoretical, geometrical decision procedures for the commuting of diagrams of arrows. Composition elimination, in the form of Gentzen's cut elimination, takes in categories, and techniques inspired by Gentzen are shown to work even better in a purely categorical context than in logic. An acquaintance with the basic ideas of general proof theory is relied on only for the sake of motivation, however, and the treatment of matters related to categories is also in general self contained. Besides familiar topics, presented in a novel, simple way, the monograph also contains new results. It can be used as an introductory text in categorical proof theory.
Cut Elimination in Categories
Author: K. Dosen
Publisher: Springer Science & Business Media
ISBN: 9401712077
Category : Philosophy
Languages : en
Pages : 240
Book Description
Proof theory and category theory were first drawn together by Lambek some 30 years ago but, until now, the most fundamental notions of category theory (as opposed to their embodiments in logic) have not been explained systematically in terms of proof theory. Here it is shown that these notions, in particular the notion of adjunction, can be formulated in such as way as to be characterised by composition elimination. Among the benefits of these composition-free formulations are syntactical and simple model-theoretical, geometrical decision procedures for the commuting of diagrams of arrows. Composition elimination, in the form of Gentzen's cut elimination, takes in categories, and techniques inspired by Gentzen are shown to work even better in a purely categorical context than in logic. An acquaintance with the basic ideas of general proof theory is relied on only for the sake of motivation, however, and the treatment of matters related to categories is also in general self contained. Besides familiar topics, presented in a novel, simple way, the monograph also contains new results. It can be used as an introductory text in categorical proof theory.
Publisher: Springer Science & Business Media
ISBN: 9401712077
Category : Philosophy
Languages : en
Pages : 240
Book Description
Proof theory and category theory were first drawn together by Lambek some 30 years ago but, until now, the most fundamental notions of category theory (as opposed to their embodiments in logic) have not been explained systematically in terms of proof theory. Here it is shown that these notions, in particular the notion of adjunction, can be formulated in such as way as to be characterised by composition elimination. Among the benefits of these composition-free formulations are syntactical and simple model-theoretical, geometrical decision procedures for the commuting of diagrams of arrows. Composition elimination, in the form of Gentzen's cut elimination, takes in categories, and techniques inspired by Gentzen are shown to work even better in a purely categorical context than in logic. An acquaintance with the basic ideas of general proof theory is relied on only for the sake of motivation, however, and the treatment of matters related to categories is also in general self contained. Besides familiar topics, presented in a novel, simple way, the monograph also contains new results. It can be used as an introductory text in categorical proof theory.
An Introduction to Proof Theory
Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336
Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336
Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
The Blind Spot
Author: Jean-Yves Girard
Publisher: European Mathematical Society
ISBN: 9783037190883
Category : Mathematics
Languages : en
Pages : 554
Book Description
These lectures on logic, more specifically proof theory, are basically intended for postgraduate students and researchers in logic. The question at stake is the nature of mathematical knowledge and the difference between a question and an answer, i.e., the implicit and the explicit. The problem is delicate mathematically and philosophically as well: the relation between a question and its answer is a sort of equality where one side is ``more equal than the other'': one thus discovers essentialist blind spots. Starting with Godel's paradox (1931)--so to speak, the incompleteness of answers with respect to questions--the book proceeds with paradigms inherited from Gentzen's cut-elimination (1935). Various settings are studied: sequent calculus, natural deduction, lambda calculi, category-theoretic composition, up to geometry of interaction (GoI), all devoted to explicitation, which eventually amounts to inverting an operator in a von Neumann algebra. Mathematical language is usually described as referring to a preexisting reality. Logical operations can be given an alternative procedural meaning: typically, the operators involved in GoI are invertible, not because they are constructed according to the book, but because logical rules are those ensuring invertibility. Similarly, the durability of truth should not be taken for granted: one should distinguish between imperfect (perennial) and perfect modes. The procedural explanation of the infinite thus identifies it with the unfinished, i.e., the perennial. But is perenniality perennial? This questioning yields a possible logical explanation for algorithmic complexity. This highly original course on logic by one of the world's leading proof theorists challenges mathematicians, computer scientists, physicists, and philosophers to rethink their views and concepts on the nature of mathematical knowledge in an exceptionally profound way.
Publisher: European Mathematical Society
ISBN: 9783037190883
Category : Mathematics
Languages : en
Pages : 554
Book Description
These lectures on logic, more specifically proof theory, are basically intended for postgraduate students and researchers in logic. The question at stake is the nature of mathematical knowledge and the difference between a question and an answer, i.e., the implicit and the explicit. The problem is delicate mathematically and philosophically as well: the relation between a question and its answer is a sort of equality where one side is ``more equal than the other'': one thus discovers essentialist blind spots. Starting with Godel's paradox (1931)--so to speak, the incompleteness of answers with respect to questions--the book proceeds with paradigms inherited from Gentzen's cut-elimination (1935). Various settings are studied: sequent calculus, natural deduction, lambda calculi, category-theoretic composition, up to geometry of interaction (GoI), all devoted to explicitation, which eventually amounts to inverting an operator in a von Neumann algebra. Mathematical language is usually described as referring to a preexisting reality. Logical operations can be given an alternative procedural meaning: typically, the operators involved in GoI are invertible, not because they are constructed according to the book, but because logical rules are those ensuring invertibility. Similarly, the durability of truth should not be taken for granted: one should distinguish between imperfect (perennial) and perfect modes. The procedural explanation of the infinite thus identifies it with the unfinished, i.e., the perennial. But is perenniality perennial? This questioning yields a possible logical explanation for algorithmic complexity. This highly original course on logic by one of the world's leading proof theorists challenges mathematicians, computer scientists, physicists, and philosophers to rethink their views and concepts on the nature of mathematical knowledge in an exceptionally profound way.
Applications of Categories in Computer Science
Author: M. P. Fourman
Publisher: Cambridge University Press
ISBN: 0521427266
Category : Computers
Languages : en
Pages : 353
Book Description
Category theory and related topics of mathematics have been increasingly applied to computer science in recent years. This book contains selected papers from the London Mathematical Society Symposium on the subject which was held at the University of Durham. Participants at the conference were leading computer scientists and mathematicians working in the area and this volume reflects the excitement and importance of the meeting. All the papers have been refereed and represent some of the most important and current ideas. Hence this book will be essential to mathematicians and computer scientists working in the applications of category theory.
Publisher: Cambridge University Press
ISBN: 0521427266
Category : Computers
Languages : en
Pages : 353
Book Description
Category theory and related topics of mathematics have been increasingly applied to computer science in recent years. This book contains selected papers from the London Mathematical Society Symposium on the subject which was held at the University of Durham. Participants at the conference were leading computer scientists and mathematicians working in the area and this volume reflects the excitement and importance of the meeting. All the papers have been refereed and represent some of the most important and current ideas. Hence this book will be essential to mathematicians and computer scientists working in the applications of category theory.
Towards Higher Categories
Author: John C. Baez
Publisher: Springer Science & Business Media
ISBN: 1441915362
Category : Algebra
Languages : en
Pages : 292
Book Description
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.
Publisher: Springer Science & Business Media
ISBN: 1441915362
Category : Algebra
Languages : en
Pages : 292
Book Description
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.
Proof-net Categories
Author: Kosta Dosen
Publisher: Polimetrica s.a.s.
ISBN: 8876990801
Category : Mathematics
Languages : en
Pages : 155
Book Description
Publisher: Polimetrica s.a.s.
ISBN: 8876990801
Category : Mathematics
Languages : en
Pages : 155
Book Description
Methods of Cut-Elimination
Author: Matthias Baaz
Publisher: Springer Science & Business Media
ISBN: 9400703201
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\”utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. Moreover, a complexity theoretic comparison of Gentzen's and Tait's methods is given. The core of the book centers around the cut-elimination method CERES (cut elimination by resolution) developed by the authors. CERES is based on the resolution calculus and radically differs from the reductive cut-elimination methods. The book shows that CERES asymptotically outperforms all reductive methods based on Gentzen's cut-reduction rules. It obtains this result by heavy use of subsumption theorems in clause logic. Moreover, several applications of CERES are given (to interpolation, complexity analysis of cut-elimination, generalization of proofs, and to the analysis of real mathematical proofs). Lastly, the book demonstrates that CERES can be extended to nonclassical logics, in particular to finitely-valued logics and to G\"odel logic.
Publisher: Springer Science & Business Media
ISBN: 9400703201
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\”utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. Moreover, a complexity theoretic comparison of Gentzen's and Tait's methods is given. The core of the book centers around the cut-elimination method CERES (cut elimination by resolution) developed by the authors. CERES is based on the resolution calculus and radically differs from the reductive cut-elimination methods. The book shows that CERES asymptotically outperforms all reductive methods based on Gentzen's cut-reduction rules. It obtains this result by heavy use of subsumption theorems in clause logic. Moreover, several applications of CERES are given (to interpolation, complexity analysis of cut-elimination, generalization of proofs, and to the analysis of real mathematical proofs). Lastly, the book demonstrates that CERES can be extended to nonclassical logics, in particular to finitely-valued logics and to G\"odel logic.
Rewriting Techniques and Applications
Author: Ralf Treinen
Publisher: Springer
ISBN: 3642023487
Category : Mathematics
Languages : en
Pages : 401
Book Description
This book constitutes the refereed proceedings of the 20th International Conference on Rewriting Techniques and Applications, RTA 2009, held in Brasília, Brazil, during June 29 - July 1, 2009. The 22 revised full papers and four system descriptions presented were carefully reviewed and selected from 59 initial submissions. The papers cover current research on all aspects of rewriting including typical areas of interest such as applications, foundational issues, frameworks, implementations, and semantics.
Publisher: Springer
ISBN: 3642023487
Category : Mathematics
Languages : en
Pages : 401
Book Description
This book constitutes the refereed proceedings of the 20th International Conference on Rewriting Techniques and Applications, RTA 2009, held in Brasília, Brazil, during June 29 - July 1, 2009. The 22 revised full papers and four system descriptions presented were carefully reviewed and selected from 59 initial submissions. The papers cover current research on all aspects of rewriting including typical areas of interest such as applications, foundational issues, frameworks, implementations, and semantics.
Categories in Computer Science and Logic
Author: John Walker Gray
Publisher: American Mathematical Soc.
ISBN: 0821851004
Category : Mathematics
Languages : en
Pages : 394
Book Description
Presents the proceedings of AMS-IMS-SIAM Summer Research Conference on Categories in Computer Science and Logic that was held at the University of Colorado in Boulder. This book discusses the use of category theory in formalizing aspects of computer programming and program design.
Publisher: American Mathematical Soc.
ISBN: 0821851004
Category : Mathematics
Languages : en
Pages : 394
Book Description
Presents the proceedings of AMS-IMS-SIAM Summer Research Conference on Categories in Computer Science and Logic that was held at the University of Colorado in Boulder. This book discusses the use of category theory in formalizing aspects of computer programming and program design.
Categories and Types in Logic, Language, and Physics
Author: Claudia Casadio
Publisher: Springer
ISBN: 3642547893
Category : Mathematics
Languages : en
Pages : 432
Book Description
For more than 60 years, Jim Lambek has been a profoundly inspirational mathematician, with groundbreaking contributions to algebra, category theory, linguistics, theoretical physics, logic and proof theory. This Festschrift was put together on the occasion of his 90th birthday. The papers in it give a good picture of the multiple research areas where the impact of Jim Lambek's work can be felt. The volume includes contributions by prominent researchers and by their students, showing how Jim Lambek's ideas keep inspiring upcoming generations of scholars.
Publisher: Springer
ISBN: 3642547893
Category : Mathematics
Languages : en
Pages : 432
Book Description
For more than 60 years, Jim Lambek has been a profoundly inspirational mathematician, with groundbreaking contributions to algebra, category theory, linguistics, theoretical physics, logic and proof theory. This Festschrift was put together on the occasion of his 90th birthday. The papers in it give a good picture of the multiple research areas where the impact of Jim Lambek's work can be felt. The volume includes contributions by prominent researchers and by their students, showing how Jim Lambek's ideas keep inspiring upcoming generations of scholars.