Author: John Cremona
Publisher: Birkhäuser
ISBN: 3034879199
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Modular Curves and Abelian Varieties
Author: John Cremona
Publisher: Birkhäuser
ISBN: 3034879199
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Publisher: Birkhäuser
ISBN: 3034879199
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Complex Abelian Varieties
Author: Herbert Lange
Publisher: Springer Science & Business Media
ISBN: 3662027887
Category : Mathematics
Languages : en
Pages : 443
Book Description
Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
Publisher: Springer Science & Business Media
ISBN: 3662027887
Category : Mathematics
Languages : en
Pages : 443
Book Description
Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
The Arithmetic of Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Complex Tori and Abelian Varieties
Author: Olivier Debarre
Publisher: American Mathematical Soc.
ISBN: 9780821831656
Category : Mathematics
Languages : en
Pages : 124
Book Description
This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories. Complex tori are ideal in this respect: One can perform "hands-on" computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry. Information for our distributors: SMF members are entitled to AMS member discounts.
Publisher: American Mathematical Soc.
ISBN: 9780821831656
Category : Mathematics
Languages : en
Pages : 124
Book Description
This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories. Complex tori are ideal in this respect: One can perform "hands-on" computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry. Information for our distributors: SMF members are entitled to AMS member discounts.
Heights in Diophantine Geometry
Author: Enrico Bombieri
Publisher: Cambridge University Press
ISBN: 9780521712293
Category : Mathematics
Languages : en
Pages : 676
Book Description
This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.
Publisher: Cambridge University Press
ISBN: 9780521712293
Category : Mathematics
Languages : en
Pages : 676
Book Description
This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.
Abelian l-Adic Representations and Elliptic Curves
Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439863865
Category : Mathematics
Languages : en
Pages : 203
Book Description
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Publisher: CRC Press
ISBN: 1439863865
Category : Mathematics
Languages : en
Pages : 203
Book Description
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Curves and Abelian Varieties
Author: Valery Alexeev
Publisher: American Mathematical Soc.
ISBN: 0821843346
Category : Mathematics
Languages : en
Pages : 290
Book Description
"This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes." "In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors. of compactified Jucobiuns of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821843346
Category : Mathematics
Languages : en
Pages : 290
Book Description
"This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes." "In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors. of compactified Jucobiuns of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties."--BOOK JACKET.
Abelian Varieties
Author: Serge Lang
Publisher: Dover Publications
ISBN: 0486828050
Category : Mathematics
Languages : en
Pages : 273
Book Description
Based on the work in algebraic geometry by Norwegian mathematician Niels Henrik Abel (1802–29), this monograph was originally published in 1959 and reprinted later in author Serge Lang's career without revision. The treatment remains a basic advanced text in its field, suitable for advanced undergraduates and graduate students in mathematics. Prerequisites include some background in elementary qualitative algebraic geometry and the elementary theory of algebraic groups. The book focuses exclusively on Abelian varieties rather than the broader field of algebraic groups; therefore, the first chapter presents all the general results on algebraic groups relevant to this treatment. Each chapter begins with a brief introduction and concludes with a historical and bibliographical note. Topics include general theorems on Abelian varieties, the theorem of the square, divisor classes on an Abelian variety, functorial formulas, the Picard variety of an arbitrary variety, the I-adic representations, and algebraic systems of Abelian varieties. The text concludes with a helpful Appendix covering the composition of correspondences.
Publisher: Dover Publications
ISBN: 0486828050
Category : Mathematics
Languages : en
Pages : 273
Book Description
Based on the work in algebraic geometry by Norwegian mathematician Niels Henrik Abel (1802–29), this monograph was originally published in 1959 and reprinted later in author Serge Lang's career without revision. The treatment remains a basic advanced text in its field, suitable for advanced undergraduates and graduate students in mathematics. Prerequisites include some background in elementary qualitative algebraic geometry and the elementary theory of algebraic groups. The book focuses exclusively on Abelian varieties rather than the broader field of algebraic groups; therefore, the first chapter presents all the general results on algebraic groups relevant to this treatment. Each chapter begins with a brief introduction and concludes with a historical and bibliographical note. Topics include general theorems on Abelian varieties, the theorem of the square, divisor classes on an Abelian variety, functorial formulas, the Picard variety of an arbitrary variety, the I-adic representations, and algebraic systems of Abelian varieties. The text concludes with a helpful Appendix covering the composition of correspondences.
Abelian Varieties, Theta Functions and the Fourier Transform
Author: Alexander Polishchuk
Publisher: Cambridge University Press
ISBN: 0521808049
Category : Mathematics
Languages : en
Pages : 308
Book Description
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Publisher: Cambridge University Press
ISBN: 0521808049
Category : Mathematics
Languages : en
Pages : 308
Book Description
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Rigid Geometry of Curves and Their Jacobians
Author: Werner Lütkebohmert
Publisher: Springer
ISBN: 331927371X
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.
Publisher: Springer
ISBN: 331927371X
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.