Current Drive and Pressure Profile Modifications with Electron Cyclotron Power in DIII-D Quiescent Double Barrier Experiments

Current Drive and Pressure Profile Modifications with Electron Cyclotron Power in DIII-D Quiescent Double Barrier Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description


Fernere Bekräftigung der nöthigen Beilage und gründliche Erinnerungen zu dem ersten Abschnitt des 5. Bandes der teutschen Staatskanzlei des Herrn Dr. Reuss, vom Jahrgang 1799, den Rechtsstreit zwischen dem Gräflich-Limburgischen Allodialerben und den von ... betreffend

Fernere Bekräftigung der nöthigen Beilage und gründliche Erinnerungen zu dem ersten Abschnitt des 5. Bandes der teutschen Staatskanzlei des Herrn Dr. Reuss, vom Jahrgang 1799, den Rechtsstreit zwischen dem Gräflich-Limburgischen Allodialerben und den von ... betreffend PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


CURRENT DRIVE AND PRESSURE PROFILE MODIFICATION WITH ELECTRON CYCLOTRON POWER IN DIII-D QUIESCENT DOUBLE BARRIER EXPERIMENTS.

CURRENT DRIVE AND PRESSURE PROFILE MODIFICATION WITH ELECTRON CYCLOTRON POWER IN DIII-D QUIESCENT DOUBLE BARRIER EXPERIMENTS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
OAK-B135 High confinement mode (H-mode) operation is a leading scenario for burning plasma devices due to its inherently high energy-confinement characteristics. The quiescent H-mode (QH-mode) offers these same advantages with the additional attraction of more steady edge conditions where the highly transient power loads due to edge localized mode (ELM) activity is replaced by the steadier power and particle losses associated with an edge harmonic oscillation (EHO). With the addition of an internal transport barrier (ITB), the capability is introduced for independent control of both the edge conditions and the core confinement region giving potential control of fusion power production for an advanced tokamak configuration. The quiescent double barrier (QDB) conditions explored in DIII-D experiments exhibit these characteristics and have resulted in steady plasma conditions for several confinement times ([approx] 26[tau][sub E]) with moderately high stored energy, [beta][sub N]H[sub 89][approx] 7 for 10[tau][sub E].

Density and Temperature Profile Modifications with Electron Cyclotron Power Injection in Quiescent Double Barrier Discharges on DIII-D.

Density and Temperature Profile Modifications with Electron Cyclotron Power Injection in Quiescent Double Barrier Discharges on DIII-D. PDF Author: D. M. Thomas
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Get Book Here

Book Description
Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes (ELMs). Our initial experiments and modeling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters; ion temperature and rotation, electron density and impurity concentration. These dynamically changing conditions provide a rapid evolution of T{sub e} T{sub i} profiles accessible with 0.3

DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas

DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We continue to explore Quiescent Double Barrier (QDB) operation on DIII-D to address issues of critical importance to internal transport barrier (ITB) plasmas. QDB plasmas exhibit both a core transport barrier and a quiescent, H-mode edge barrier. Both experiments and modeling of these plasmas are leading to an increased understanding of this regime and it's potential advantages for advanced-tokamak (AT) burning-plasma operation. These near steady plasma conditions have been maintained on DIII-D for up to 4s, times greater than 35[tau][sub E], and exhibit high performance with [beta][sub N]> 2.5 and neutron production rates S[sub n] [approx] 1 x 10[sup 16]s[sup -1]. Recent experiments have been directed at exploring both the current profile modification effects of electron cyclotron current drive (ECCD) and electron cyclotron (ECH) heating-induced changes in temperature, density and impurity profiles. We use model-based analysis to determine the effects of both heating and current drive on the q-profile in these QDB plasmas. Experiments based on predictive modeling achieved a significant modification to the q-profile evolution [1] resulting from the non-inductive current drive effects due to direct ECCD and changes in the bootstrap and neutral beam current drive components. We observe that the injection of EC power inside the barrier region changes the density peaking from n[sub e]/n[sub e] = 2.1 to 1.5 accompanied by a significant reduction in the core carbon and high-Z impurities, nickel and copper.

DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas

DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas PDF Author: T. H. Osborne
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We continue to explore Quiescent Double Barrier (QDB) operation on DIII-D to address issues of critical importance to internal transport barrier (ITB) plasmas. QDB plasmas exhibit both a core transport barrier and a quiescent, H-mode edge barrier. Both experiments and modeling of these plasmas are leading to an increased understanding of this regime and it's potential advantages for advanced-tokamak (AT) burning-plasma operation. These near steady plasma conditions have been maintained on DIII-D for up to 4s, times greater than 35{tau}{sub E}, and exhibit high performance with {beta}{sub N}> 2.5 and neutron production rates S{sub n} {approx} 1 x 10{sup 16}s{sup -1}. Recent experiments have been directed at exploring both the current profile modification effects of electron cyclotron current drive (ECCD) and electron cyclotron (ECH) heating-induced changes in temperature, density and impurity profiles. We use model-based analysis to determine the effects of both heating and current drive on the q-profile in these QDB plasmas. Experiments based on predictive modeling achieved a significant modification to the q-profile evolution [1] resulting from the non-inductive current drive effects due to direct ECCD and changes in the bootstrap and neutral beam current drive components. We observe that the injection of EC power inside the barrier region changes the density peaking from n{sub e}/n{sub e} = 2.1 to 1.5 accompanied by a significant reduction in the core carbon and high-Z impurities, nickel and copper.

Den Norske Utstilling i Helsingfors 1911

Den Norske Utstilling i Helsingfors 1911 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description


Core and Edge Aspects of Quiescent Double Barrier Operation on DIII-D. WITH Relevance to Critical Itb Physics Issues

Core and Edge Aspects of Quiescent Double Barrier Operation on DIII-D. WITH Relevance to Critical Itb Physics Issues PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
OAK-B135 Recent results from DIII-D address critical internal transport barrier (ITB) research issues relating to sustainability, impurity accumulation and ITB control, and have also demonstrated successful application of general profile control tools. In addition, substantial progress has been made in understanding the physics of the Quiescent Double Barrier (QDB) regime, increasing the demonstrating operating space for the regime and improving performance. Highlights include: (1) a clear demonstration of q-profile modification using electron cyclotron current drive (ECCD); (2) successful use of localized profile control using electron cyclotron heating (ECH) or ECCD to reduce central high-Z impurity accumulation associated with density peaking; (3) theory-based modeling codes are now being used to design experiments; (4) the operating space for Quiescent H-mode (QH-mode) has been substantially broadened, in particular higher density operation has been achieved; (5) absolute ([beta] 3.8%, neutron rate S{sub n} d"5.5 x 1015 s−1) and relative ([beta]{sub N}H9 = 7 for 10 [tau]{sub E}) performance has been increased; (6) with regard to sustainment, QDB plasmas have been run for 3.8 s or 26 [tau]{sub E}. These results emphasize that it is possible to produce sustained high quality H-mode performance with an edge localized mode (ELM)-free edge, directly addressing a major issue in fusion research, of how to ameliorate or eliminate ELM induced pulsed divertor particle and heat loads.

Modification of the Current Profile in DIII-D by Off-Axis Electron Cyclotron Current Drive

Modification of the Current Profile in DIII-D by Off-Axis Electron Cyclotron Current Drive PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Localized non-inductive currents due to electron cyclotron wave absorption have been measured on the DIII-D tokamak. Clear evidence of the non-inductive currents is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. The magnitude and location of the non-inductive current is evaluated by comparing the total and Ohmic current profiles of discharges with and without electron cyclotron wave power. The measured current agrees with Fokker-Planck calculations near the magnetic axis, but exceeds the predicted value as the location of the current drive is moved to the half radius.

Comparison Between the Electron Cyclotron Current Drive Experiments on DIII-D and Predictions for T-10

Comparison Between the Electron Cyclotron Current Drive Experiments on DIII-D and Predictions for T-10 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description
Electron cyclotron current drive has been demonstrated on the DIII-D tokamak in an experiment in which (approximately)1 MW of microwave power generated (approximately)50 kA of non-inductive current. The rf-generated portion was about 15% of the total current. On the T-10 tokamak, more than 3 MW of microwave power will be available for current generation, providing the possibility that all the plasma current could be maintained by this method. Fokker-Planck calculations using the code CQL3D and ray tracing calculations using TORAY have been performed to model both experiments. For DIII-D the agreement between the calculations and measurements is good, producing confidence in the validity of the computational models. The same calculations using the T-10 geometry predict that for n{sub e}(0) (approximately) 1.8 x 1013 cm−3, and T{sub e}(0) (approximately) 7 keV, 1.2 MW, that is, the power available from only three gyrotrons, could generate as much as 150 kA of non-inductive current. Parameter space scans in which temperature, density and resonance location were varied have been performed to indicate the current drive expected under different experimental conditions. The residual dc electric field was considered in the DIII-D analysis because of its nonlinear effect on the electron distribution, which complicates the interpretation of the results. A 110 GHz ECH system is being installed on DIII-D. Initial operations, planned for late 1991, will use four gyrotrons with 500 kW each and 10 second output pulses. Injection will be from the low field side from launchers which can be steered to heat at the desired location. These launchers, two of which are presently installed, are set at 20 degrees to the radial and rf current drive studies are planned for the initial operation. 8 refs., 10 figs.