Author: Aiden A. Bruen
Publisher: John Wiley & Sons
ISBN: 1118031385
Category : Mathematics
Languages : en
Pages : 496
Book Description
Discover the first unified treatment of today's most essential information technologies— Compressing, Encrypting, and Encoding With identity theft, cybercrime, and digital file sharing proliferating in today's wired world, providing safe and accurate information transfers has become a paramount concern. The issues and problems raised in this endeavor are encompassed within three disciplines: cryptography, information theory, and error-correction. As technology continues to develop, these fields have converged at a practical level, increasing the need for a unified treatment of these three cornerstones of the information age. Stressing the interconnections of the disciplines, Cryptography, Information Theory, and Error-Correction offers a complete, yet accessible account of the technologies shaping the 21st century. This book contains the most up-to-date, detailed, and balanced treatment available on these subjects. The authors draw on their experience both in the classroom and in industry, giving the book's material and presentation a unique real-world orientation. With its reader-friendly style and interdisciplinary emphasis, Cryptography, Information Theory, and Error-Correction serves as both an admirable teaching text and a tool for self-learning. The chapter structure allows for anyone with a high school mathematics education to gain a strong conceptual understanding, and provides higher-level students with more mathematically advanced topics. The authors clearly map out paths through the book for readers of all levels to maximize their learning. This book: Is suitable for courses in cryptography, information theory, or error-correction as well as courses discussing all three areas Provides over 300 example problems with solutions Presents new and exciting algorithms adopted by industry Discusses potential applications in cell biology Details a new characterization of perfect secrecy Features in-depth coverage of linear feedback shift registers (LFSR), a staple of modern computing Follows a layered approach to facilitate discussion, with summaries followed by more detailed explanations Provides a new perspective on the RSA algorithm Cryptography, Information Theory, and Error-Correction is an excellent in-depth text for both graduate and undergraduate students of mathematics, computer science, and engineering. It is also an authoritative overview for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, entrepreneurs, and the generally curious.
Cryptography, Information Theory, and Error-Correction
Author: Aiden A. Bruen
Publisher: John Wiley & Sons
ISBN: 1118031385
Category : Mathematics
Languages : en
Pages : 496
Book Description
Discover the first unified treatment of today's most essential information technologies— Compressing, Encrypting, and Encoding With identity theft, cybercrime, and digital file sharing proliferating in today's wired world, providing safe and accurate information transfers has become a paramount concern. The issues and problems raised in this endeavor are encompassed within three disciplines: cryptography, information theory, and error-correction. As technology continues to develop, these fields have converged at a practical level, increasing the need for a unified treatment of these three cornerstones of the information age. Stressing the interconnections of the disciplines, Cryptography, Information Theory, and Error-Correction offers a complete, yet accessible account of the technologies shaping the 21st century. This book contains the most up-to-date, detailed, and balanced treatment available on these subjects. The authors draw on their experience both in the classroom and in industry, giving the book's material and presentation a unique real-world orientation. With its reader-friendly style and interdisciplinary emphasis, Cryptography, Information Theory, and Error-Correction serves as both an admirable teaching text and a tool for self-learning. The chapter structure allows for anyone with a high school mathematics education to gain a strong conceptual understanding, and provides higher-level students with more mathematically advanced topics. The authors clearly map out paths through the book for readers of all levels to maximize their learning. This book: Is suitable for courses in cryptography, information theory, or error-correction as well as courses discussing all three areas Provides over 300 example problems with solutions Presents new and exciting algorithms adopted by industry Discusses potential applications in cell biology Details a new characterization of perfect secrecy Features in-depth coverage of linear feedback shift registers (LFSR), a staple of modern computing Follows a layered approach to facilitate discussion, with summaries followed by more detailed explanations Provides a new perspective on the RSA algorithm Cryptography, Information Theory, and Error-Correction is an excellent in-depth text for both graduate and undergraduate students of mathematics, computer science, and engineering. It is also an authoritative overview for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, entrepreneurs, and the generally curious.
Publisher: John Wiley & Sons
ISBN: 1118031385
Category : Mathematics
Languages : en
Pages : 496
Book Description
Discover the first unified treatment of today's most essential information technologies— Compressing, Encrypting, and Encoding With identity theft, cybercrime, and digital file sharing proliferating in today's wired world, providing safe and accurate information transfers has become a paramount concern. The issues and problems raised in this endeavor are encompassed within three disciplines: cryptography, information theory, and error-correction. As technology continues to develop, these fields have converged at a practical level, increasing the need for a unified treatment of these three cornerstones of the information age. Stressing the interconnections of the disciplines, Cryptography, Information Theory, and Error-Correction offers a complete, yet accessible account of the technologies shaping the 21st century. This book contains the most up-to-date, detailed, and balanced treatment available on these subjects. The authors draw on their experience both in the classroom and in industry, giving the book's material and presentation a unique real-world orientation. With its reader-friendly style and interdisciplinary emphasis, Cryptography, Information Theory, and Error-Correction serves as both an admirable teaching text and a tool for self-learning. The chapter structure allows for anyone with a high school mathematics education to gain a strong conceptual understanding, and provides higher-level students with more mathematically advanced topics. The authors clearly map out paths through the book for readers of all levels to maximize their learning. This book: Is suitable for courses in cryptography, information theory, or error-correction as well as courses discussing all three areas Provides over 300 example problems with solutions Presents new and exciting algorithms adopted by industry Discusses potential applications in cell biology Details a new characterization of perfect secrecy Features in-depth coverage of linear feedback shift registers (LFSR), a staple of modern computing Follows a layered approach to facilitate discussion, with summaries followed by more detailed explanations Provides a new perspective on the RSA algorithm Cryptography, Information Theory, and Error-Correction is an excellent in-depth text for both graduate and undergraduate students of mathematics, computer science, and engineering. It is also an authoritative overview for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, entrepreneurs, and the generally curious.
Cryptography, Information Theory, and Error-Correction
Author: Aiden A. Bruen
Publisher: John Wiley & Sons
ISBN: 1119582407
Category : Computers
Languages : en
Pages : 690
Book Description
CRYPTOGRAPHY, INFORMATION THEORY, AND ERROR-CORRECTION A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field As technology continues to evolve Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century is an indispensable resource for anyone interested in the secure exchange of financial information. Identity theft, cybercrime, and other security issues have taken center stage as information becomes easier to access. Three disciplines offer solutions to these digital challenges: cryptography, information theory, and error-correction, all of which are addressed in this book. This book is geared toward a broad audience. It is an excellent reference for both graduate and undergraduate students of mathematics, computer science, cybersecurity, and engineering. It is also an authoritative overview for professionals working at financial institutions, law firms, and governments who need up-to-date information to make critical decisions. The book’s discussions will be of interest to those involved in blockchains as well as those working in companies developing and applying security for new products, like self-driving cars. With its reader-friendly style and interdisciplinary emphasis this book serves as both an ideal teaching text and a tool for self-learning for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, and entrepreneurs. Six new chapters cover current topics like Internet of Things security, new identities in information theory, blockchains, cryptocurrency, compression, cloud computing and storage. Increased security and applicable research in elliptic curve cryptography are also featured. The book also: Shares vital, new research in the field of information theory Provides quantum cryptography updates Includes over 350 worked examples and problems for greater understanding of ideas. Cryptography, Information Theory, and Error-Correction guides readers in their understanding of reliable tools that can be used to store or transmit digital information safely.
Publisher: John Wiley & Sons
ISBN: 1119582407
Category : Computers
Languages : en
Pages : 690
Book Description
CRYPTOGRAPHY, INFORMATION THEORY, AND ERROR-CORRECTION A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field As technology continues to evolve Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century is an indispensable resource for anyone interested in the secure exchange of financial information. Identity theft, cybercrime, and other security issues have taken center stage as information becomes easier to access. Three disciplines offer solutions to these digital challenges: cryptography, information theory, and error-correction, all of which are addressed in this book. This book is geared toward a broad audience. It is an excellent reference for both graduate and undergraduate students of mathematics, computer science, cybersecurity, and engineering. It is also an authoritative overview for professionals working at financial institutions, law firms, and governments who need up-to-date information to make critical decisions. The book’s discussions will be of interest to those involved in blockchains as well as those working in companies developing and applying security for new products, like self-driving cars. With its reader-friendly style and interdisciplinary emphasis this book serves as both an ideal teaching text and a tool for self-learning for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, and entrepreneurs. Six new chapters cover current topics like Internet of Things security, new identities in information theory, blockchains, cryptocurrency, compression, cloud computing and storage. Increased security and applicable research in elliptic curve cryptography are also featured. The book also: Shares vital, new research in the field of information theory Provides quantum cryptography updates Includes over 350 worked examples and problems for greater understanding of ideas. Cryptography, Information Theory, and Error-Correction guides readers in their understanding of reliable tools that can be used to store or transmit digital information safely.
Protecting Information
Author: Susan Loepp
Publisher: Cambridge University Press
ISBN: 1139457667
Category : Computers
Languages : en
Pages : 269
Book Description
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices.
Publisher: Cambridge University Press
ISBN: 1139457667
Category : Computers
Languages : en
Pages : 269
Book Description
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices.
Information Theory, Coding and Cryptography
Author: Arijit Saha
Publisher: Pearson Education India
ISBN: 9332517843
Category :
Languages : en
Pages : 280
Book Description
Information Theory, Coding & Cryptography has been designed as a comprehensive book for the students of engineering discussing Source Encoding, Error Control Codes & Cryptography. The book contains the recent developments of coded modulation, trellises for codes, turbo coding for reliable data and interleaving. The text balances the mathematical rigor with exhaustive amount of solved, unsolved questions along with a database of MCQs.
Publisher: Pearson Education India
ISBN: 9332517843
Category :
Languages : en
Pages : 280
Book Description
Information Theory, Coding & Cryptography has been designed as a comprehensive book for the students of engineering discussing Source Encoding, Error Control Codes & Cryptography. The book contains the recent developments of coded modulation, trellises for codes, turbo coding for reliable data and interleaving. The text balances the mathematical rigor with exhaustive amount of solved, unsolved questions along with a database of MCQs.
Codes: An Introduction to Information Communication and Cryptography
Author: Norman L. Biggs
Publisher: Springer Science & Business Media
ISBN: 1848002734
Category : Computers
Languages : en
Pages : 274
Book Description
Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.
Publisher: Springer Science & Business Media
ISBN: 1848002734
Category : Computers
Languages : en
Pages : 274
Book Description
Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.
Error-Correction Coding and Decoding
Author: Martin Tomlinson
Publisher: Springer
ISBN: 3319511033
Category : Technology & Engineering
Languages : en
Pages : 527
Book Description
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.
Publisher: Springer
ISBN: 3319511033
Category : Technology & Engineering
Languages : en
Pages : 527
Book Description
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.
Coding Theory And Cryptology
Author: Harald Niederreiter
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597
Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597
Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Foundations of Coding
Author: Jiri Adamek
Publisher: John Wiley & Sons
ISBN: 1118031512
Category : Computers
Languages : en
Pages : 352
Book Description
Although devoted to constructions of good codes for error control, secrecy or data compression, the emphasis is on the first direction. Introduces a number of important classes of error-detecting and error-correcting codes as well as their decoding methods. Background material on modern algebra is presented where required. The role of error-correcting codes in modern cryptography is treated as are data compression and other topics related to information theory. The definition-theorem proof style used in mathematics texts is employed through the book but formalism is avoided wherever possible.
Publisher: John Wiley & Sons
ISBN: 1118031512
Category : Computers
Languages : en
Pages : 352
Book Description
Although devoted to constructions of good codes for error control, secrecy or data compression, the emphasis is on the first direction. Introduces a number of important classes of error-detecting and error-correcting codes as well as their decoding methods. Background material on modern algebra is presented where required. The role of error-correcting codes in modern cryptography is treated as are data compression and other topics related to information theory. The definition-theorem proof style used in mathematics texts is employed through the book but formalism is avoided wherever possible.