Corporate Bankruptcy Prediction

Corporate Bankruptcy Prediction PDF Author: Błażej Prusak
Publisher: MDPI
ISBN: 303928911X
Category : Business & Economics
Languages : en
Pages : 202

Get Book Here

Book Description
Bankruptcy prediction is one of the most important research areas in corporate finance. Bankruptcies are an indispensable element of the functioning of the market economy, and at the same time generate significant losses for stakeholders. Hence, this book was established to collect the results of research on the latest trends in predicting the bankruptcy of enterprises. It suggests models developed for different countries using both traditional and more advanced methods. Problems connected with predicting bankruptcy during periods of prosperity and recession, the selection of appropriate explanatory variables, as well as the dynamization of models are presented. The reliability of financial data and the validity of the audit are also referenced. Thus, I hope that this book will inspire you to undertake new research in the field of forecasting the risk of bankruptcy.

Corporate Bankruptcy Prediction

Corporate Bankruptcy Prediction PDF Author: Błażej Prusak
Publisher: MDPI
ISBN: 303928911X
Category : Business & Economics
Languages : en
Pages : 202

Get Book Here

Book Description
Bankruptcy prediction is one of the most important research areas in corporate finance. Bankruptcies are an indispensable element of the functioning of the market economy, and at the same time generate significant losses for stakeholders. Hence, this book was established to collect the results of research on the latest trends in predicting the bankruptcy of enterprises. It suggests models developed for different countries using both traditional and more advanced methods. Problems connected with predicting bankruptcy during periods of prosperity and recession, the selection of appropriate explanatory variables, as well as the dynamization of models are presented. The reliability of financial data and the validity of the audit are also referenced. Thus, I hope that this book will inspire you to undertake new research in the field of forecasting the risk of bankruptcy.

Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction

Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction PDF Author: Stewart Jones
Publisher: Cambridge University Press
ISBN: 0521869285
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
A thorough compendium of credit risk modelling approaches, including several new techniques that extend the horizons of future research and practice. Models and techniques are illustrated with empirical examples and are accompanied by a careful explanation of model derivation issues. An ideal resource for academics, practitioners and regulators.

Corporate Financial Distress and Bankruptcy

Corporate Financial Distress and Bankruptcy PDF Author: Edward I. Altman
Publisher: John Wiley & Sons
ISBN: 1118046048
Category : Business & Economics
Languages : en
Pages : 314

Get Book Here

Book Description
A comprehensive look at the enormous growth and evolution of distressed debt, corporate bankruptcy, and credit risk default This Third Edition of the most authoritative finance book on the topic updates and expands its discussion of corporate distress and bankruptcy, as well as the related markets dealing with high-yield and distressed debt, and offers state-of-the-art analysis and research on the costs of bankruptcy, credit default prediction, the post-emergence period performance of bankrupt firms, and more.

Probabilistic Methods for Financial and Marketing Informatics

Probabilistic Methods for Financial and Marketing Informatics PDF Author: Richard E. Neapolitan
Publisher: Elsevier
ISBN: 0080555675
Category : Mathematics
Languages : en
Pages : 427

Get Book Here

Book Description
Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and using the software package Netica to represent and solve problems. The book contains unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance. It shares insights about when and why probabilistic methods can and cannot be used effectively. This book is recommended for all R&D professionals and students who are involved with industrial informatics, that is, applying the methodologies of computer science and engineering to business or industry information. This includes computer science and other professionals in the data management and data mining field whose interests are business and marketing information in general, and who want to apply AI and probabilistic methods to their problems in order to better predict how well a product or service will do in a particular market, for instance. Typical fields where this technology is used are in advertising, venture capital decision making, operational risk measurement in any industry, credit scoring, and investment science. - Unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance - Shares insights about when and why probabilistic methods can and cannot be used effectively - Complete review of Bayesian networks and probabilistic methods for those IT professionals new to informatics.

Corporate Financial Distress, Restructuring, and Bankruptcy

Corporate Financial Distress, Restructuring, and Bankruptcy PDF Author: Edward I. Altman
Publisher: John Wiley & Sons
ISBN: 1119481805
Category : Business & Economics
Languages : en
Pages : 374

Get Book Here

Book Description
A comprehensive look at the enormous growth and evolution of distressed debt markets, corporate bankruptcy, and credit risk models This Fourth Edition of the most authoritative finance book on the topic updates and expands its discussion of financial distress and bankruptcy, as well as the related topics dealing with leveraged finance, high-yield, and distressed debt markets. It offers state-of-the-art analysis and research on U.S. and international restructurings, applications of distress prediction models in financial and managerial markets, bankruptcy costs, restructuring outcomes, and more.

Digitalization in Finance and Accounting

Digitalization in Finance and Accounting PDF Author: David Procházka
Publisher: Springer Nature
ISBN: 3030552772
Category : Business & Economics
Languages : en
Pages : 368

Get Book Here

Book Description
This book explores current digitalization issues in finance and accounting with particular focus on emerging and transitioning markets. It features models, empirical studies and cases studies on topics such as Fintech, blockchain technology, financing renewable energy, and XBRL usage from sectors such health care, pharmacology, transportation, and education. Such a complex view of current economic phenomena makes the volume attractive not only for academia, but also for regulators and policy-makers, when deliberating the potential outcome of competing regulatory mechanisms.

Decision Forests for Computer Vision and Medical Image Analysis

Decision Forests for Computer Vision and Medical Image Analysis PDF Author: Antonio Criminisi
Publisher: Springer Science & Business Media
ISBN: 1447149297
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

Advances in DEA Theory and Applications

Advances in DEA Theory and Applications PDF Author: Kaoru Tone
Publisher: John Wiley & Sons
ISBN: 1118946707
Category : Mathematics
Languages : en
Pages : 579

Get Book Here

Book Description
A key resource and framework for assessing the performance of competing entities, including forecasting models Advances in DEA Theory and Applications provides a much-needed framework for assessing the performance of competing entities with special emphasis on forecasting models. It helps readers to determine the most appropriate methodology in order to make the most accurate decisions for implementation. Written by a noted expert in the field, this text provides a review of the latest advances in DEA theory and applications to the field of forecasting. Designed for use by anyone involved in research in the field of forecasting or in another application area where forecasting drives decision making, this text can be applied to a wide range of contexts, including education, health care, banking, armed forces, auditing, market research, retail outlets, organizational effectiveness, transportation, public housing, and manufacturing. This vital resource: Explores the latest developments in DEA frameworks for the performance evaluation of entities such as public or private organizational branches or departments, economic sectors, technologies, and stocks Presents a novel area of application for DEA; namely, the performance evaluation of forecasting models Promotes the use of DEA to assess the performance of forecasting models in a wide area of applications Provides rich, detailed examples and case studies Advances in DEA Theory and Applications includes information on a balanced benchmarking tool that is designed to help organizations examine their assumptions about their productivity and performance.

Brain Function Assessment in Learning

Brain Function Assessment in Learning PDF Author: Claude Frasson
Publisher: Springer
ISBN: 3319676156
Category : Computers
Languages : en
Pages : 229

Get Book Here

Book Description
This book constitutes the thoroughly refereed proceedings of the First International Conference on Brain Function Assessment in Learning, BFAL 2017, held in Patras, Greece, in September 2017. The 16 revised full papers presented together with 2 invited talks and 6 posters were carefully selected from 28 submissions. The BFAL conference aims to regroup research in multidisciplinary domains such as neuroscience, health, computer science, artificial intelligence, human-computer interaction, education and social interaction on the theme of Brain Function Assessment in Learning.

Least Squares Support Vector Machines

Least Squares Support Vector Machines PDF Author: Johan A. K. Suykens
Publisher: World Scientific
ISBN: 9789812381514
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples.